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Abstract. Evolutionary game theory and the adaptive dynamics approach have made invaluable contributions

to understand how gradual evolution leads to adaptation when individuals interact. Here, we review some

of the basic tools that have come out of these contributions to model the evolution of quantitative traits in

complex populations. We collect together mathematical expressions that describe directional and disruptive

selection in class- and group-structured populations in terms of individual fitness, with the aims of bridging

different models and interpreting adaptation. In particular, our review of disruptive selection suggests there

are two main paths that can lead to diversity: (i) when individual fitness increases more than linearly with trait

expression; (ii) when trait expression simultaneously increases the probability that an individual is in a certain

context (e.g. a given age, sex, habitat, size or social environment) and fitness in that context. We provide various

examples of these and more broadly argue that population structure lays the ground for the emergence of

polymorphism with unique characteristics. Beyond this, we hope that the descriptions of selection we present

here help see the tight links among fundamental branches of evolutionary biology, from life-history to social

evolution through evolutionary ecology, and thus favour further their integration.
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1 Introduction

Owing to exponential growth, a population whose members survive and reproduce independently from one

another would either rapidly go extinct or fill the universe [1–3]. Our world, however, is bounded. Inevitably,

individuals therefore interact with one another. These interactions may be direct, such as fights to control

breeding territories or cooperative behaviours to exploit the environment more efficiently, or indirect, as via

the consumption of a common resource or the sharing of a common predator. When individuals vary in heri-

table traits that influence such interactions, those traits that are better adapted, in other words those that are

associated with greater reproductive success, become more common. This sets in motion Darwinian evolution

and ultimately leads to the apparent “fitness of form and function” [4] that characterizes the natural world.

While it should be easy to conceive how natural selection shapes organisms to become adapted to an environ-

ment that is determined by exogenous factors (e.g. level of precipitation, pressure, or temperature), it is less

straightforward when the environment is dynamic and endogenous, made up of conspecifics whose evolv-

ing traits influence an individual’s reproductive success. Understanding adaptation when reproduction and

survival depend on interactions among individuals has been one of the driving goals of evolutionary game

theory and adaptive dynamics [5–9]. Such dependency on interactions typically falls under two categories: (i)

an individual’s ability to reproduce may be influenced by population density, in particular reproduction must

eventually be curtailed by density (density-dependence); (ii) the reproductive success of an individual depends

on the traits expressed by other individuals in the population and on their frequency (frequency-dependence).

Traditional evolutionary game theory has mainly focused on understanding the consequences of frequency-

dependence through direct interactions among individuals, such as helping or harming [10, 11, for textbooks].

The adaptive dynamics approach grew out of evolutionary game theory to focus on the gradual evolution of

quantitative traits (so when traits are subject to rare mutations with small phenotypic effects) that experience

both density- and frequency-dependent selection, where frequency-dependence is typically due to indirect

interactions mediated by the environment or ecology, such as apparent competition [12–14, for textbooks].

Irrespective of the specific point of focus, evolutionary game theory and the adaptive dynamics approach agree

on how to characterize adaptation: a population that is adapted should be uninvadable, i.e. be resistant to in-

vasion by any rare mutant strategy [7–9, 15–19]. This is made formal using what is commonly referred to as

invasion fitness, which in a population reproducing and censused at discrete time points, is the geometric

growth rate of a rare mutant coding for a strategy alternative to those in the resident population [20–24]. A

strategy that maximises invasion fitness when the resident population is at the uninvadable state can be con-

sidered as optimal: it is an end-point where evolution comes to a halt [7, 15–18]. Building on evolutionary

game theory, the approach of adaptive dynamics has laid a framework based on invasion fitness to understand

how a population may become uninvadable under gradual evolution. In particular, this approach determines

whether an uninvadable population consists of individuals all expressing the same strategy (i.e. is monomor-

phic) or, owing to frequency-dependence and disruptive selection, consists of multiple coexisting strategies
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(i.e. is polymorphic; the set of such coexisting strategies is sometimes referred to as an evolutionarily stable

[4] or steady [25] coalition). The framework of adaptive dynamics is thus particularly useful to investigate the

conditions that favour the emergence of phenotypic variation in the form of adaptive polymorphism, and in

the context of evolutionary games, of variation in social behaviour.

More broadly, analyses of selection based on invasion fitness have made the study of adaptation possible under

an extraordinary wide range of scenarios where frequency- and density-dependence arise (e.g. competition

for resources or mates, sex allocation, altruism, warfare, state-dependent life-histories, phenotypic plasticity,

social learning [10, 11, 26, 27, for overviews]). While the range of social and ecological scenarios afforded by this

approach may seem limitless, using invasion fitness from first principles is not always straightforward owing

to two reasons [28]. The first is conceptual. Loosely speaking, invasion fitness is a gene- or replicator-centered

measure of reproductive success [29, 30]. But the fundamental unit of behavioral and evolutionary ecology

is typically the individual organism [10, 31]. It is therefore desirable to understand adaptation at this level. A

second issue is computational. In heterogeneous populations (e.g. where individuals vary in age or size and

this variation influences the effects of traits on reproduction), invasion fitness turns out to be the dominant

eigenvalue of a matrix which can be large and complicated [32–37]. Analyzing this eigenvalue mathematically

is often cumbersome, limiting analysis and obscuring biological interpretation.

Here we review key equations that resolve some of these issues. Our goal is two fold: to facilitate the inter-

pretation of natural selection in terms of the individual; and to collect together simple formulas to investigate

gradual evolution in complex populations (i.e. in class- and group-structured populations, e.g. where individ-

uals vary in age, sex, or physiology and interact in small social groups). In particular, we provide expressions

for directional and disruptive selection that are sufficient to determine whether gradual evolution leads a pop-

ulation to a monomorphic uninvadable state or to become polymorphic under the adaptive dynamics frame-

work. Most of the formulas presented here are currently disseminated in the literature (sometimes derived via

other frameworks, such as population or quantitative genetics), some we re-derive using invasion analysis and

also extend (in our Appendix). Ultimately, we aim to provide a point of entry for other evolutionary biologists

interested in modelling Darwinian evolution in non-homogeneous populations, where social and ecological

interactions lead to density- and frequency-dependence and possibly adaptive polymorphism.

2 The basics

First, we go over the basics of invasion analysis and how it can be used to model gradual evolution within the

framework of adaptive dynamics.

2.1 Invasion fitness and uninvadability

Suppose we are interested in the evolution of a quantitative trait, such as the extraction rate on a resource, the

investment into parental care, or the proclivity to disperse. We focus our attention to scalar-valued traits for
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now, but later consider traits whose expression can change over ontogeny and plastic traits (see also [38–42]

for the joint evolution of multiple traits). We first assume that the individuals of a large asexual population of

haploid individuals all express the same value z ∈ Z for this trait (where Z ⊆ R is the space of all strategies; Ta-

ble I for a list of key symbols). If this monomorphic resident population experiences ecological or demographic

changes, we wait enough time for these changes to reach a stationary state, e.g. for the population to reach an

equilibrium size or for its resource to reach a stable density (this stationary state may be more complicated

like a limit cycle if there are deterministic fluctuations; or a probability distribution if there are stochastic ef-

fects). Such “ecological” equilibrium we can denote by n̂(z) to highlight that it may depend on the resident trait.

Against this background, we introduce a single copy mutation that causes the expression of an alternative trait

value, say zm ∈ Z (with subscript “m” for mutant). Over time, this copy may create a lineage whose members

reproduce such that on average, they more than replace themselves. In this case, the mutant has a chance to

invade and fix, which would lead to trait evolution and in turn potential ecological changes (as zm substitutes

z and ecology changes to n̂(zm)).

To formalize the above, we define the invasion fitness ρ(zm, z) of a mutant zm in a resident population z as its

geometric growth rate, i.e. as the per-capita per-time-step number of mutant copies produced by the mutant

lineage ([20–22, 24, 43–45]; as the mutant is rare, its ecological background is set by the resident so ρ(zm, z)

will also typically depend on n̂(z) but we do not write such dependency for ease of presentation). From the

theory of branching processes [46], it follows that the mutant goes extinct with probability one if, and only if,

ρ(zm, z) ≤ 1, i.e. if on average the mutant at most replaces itself. Otherwise, there is a non-zero probability that

the mutant persists indefinitely. The definition of uninvadability derives naturally from this result: a population

monomorphic for zu is said to be uninvadable when

ρ(zm, zu) ≤ 1 for all zm ∈ Z , (1)

such that it is protected against invasion from all possible mutants (e.g. 15–18) 1.

2.2 Local analysis and gradual evolution

A related but different question is whether a population can become uninvadable through gradual evolution,

to which the adaptive dynamics approach provides an answer. The main assumption behind this approach is

that mutations are rare, so that a population monomorphic for z has time to reach its ecological equilibrium

n̂(z) before a mutant appears, and that mutations have weak unbiased phenotypic effects (i.e. following the

continuum of allele model [47–50] with ϵ= zm − z small). When the difference ϵ= zm − z between mutant and

resident trait is small, invasion fitness can be Taylor expanded in zm around zm = z as

ρ(zm, z) = 1+ s(z)(zm − z)+ 1

2
h(z)(zm − z)2 +O(ϵ3), (2)

1Using the fact that a neutral mutant has invasion fitness equal to one (i.e. that ρ(z, z) = 1), uninvadability eq. (1) of a population
monomorphic for zu can equivalently be expressed as zu = argmaxzm∈Z ρ(zm, zu) , i.e. zu maximises invasion fitness when the resident is
at the uninvadable state.
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where

s(z) = ∂ρ(zm, z)

∂zm

∣∣∣∣
zm=z

and h(z) = ∂2ρ(zm, z)

∂zm
2

∣∣∣∣
zm=z

(3)

are two key functions that respectively capture directional and disruptive selection, which can be used to char-

acterise gradual evolution.

The function s(z), which is sometimes referred to as the selection gradient or local fitness gradient [9], gives the

direction of selection. It tells that selection favours mutants that increase the trait value (zm > z) when s(z) > 0,

and conversely mutants that decrease the trait value (zm < z) when s(z) < 0. A trait value z∗ is called a singular

strategy when it is such that when expressed by the whole population, there is no directional selection, i.e.

z∗ is a singular strategy if s(z∗) = 0. (4)

When the population is away from a singular strategy (z ̸= z∗), s(z) is sufficient to determine whether a nearby

mutant goes extinct with certainty or whether it has a chance to invade (as we can ignore terms of order (zm −
z)2 and above in eq. 2 when zm − z is small). If such a mutant invades, then the mutant eventually fixes and

thus replaces the resident. This “invasion implies substitution” result, which has been proven to hold under a

wide range of situations [51–57], means that there exists a regime of rare mutation with weak effects such that

evolution proceeds by a trait substitution sequence whereby the population can be thought of as transiting

from one monomorphic state to another [3]. A singular strategy z∗ is then approached gradually via such a

sequence when

s′(z∗) = ds(z)

dz

∣∣∣∣
z=z∗

= h(z∗)+ ∂2ρ(zm, z)

∂zm∂z

∣∣∣∣
zm=z=z∗

< 0 (5)

[58–61]. A singular strategy z∗ satisfying eq. (5) is thus an attractor of selection and said to be convergence

stable.

Once the population has evolved to express a singular strategy z∗, selection is determined by h(z∗) (see eq. 2

with s(z∗) = 0). In particular, all nearby mutants are counter-selected when

h(z∗) < 0. (6)

In this case, the population is locally uninvadable and selection on the trait is stabilising for z∗ (Fig. 1A; [7, 59]).

By contrast, any mutant can invade when h(z∗) > 0. In fact, when h(z∗) > 0 and the singular strategy z∗ is

convergence stable (eq. 5 holds), selection is frequency-dependent and disruptive such that the population

becomes polymorphic through a process referred to as evolutionary branching whereby the population trait

distribution goes from unimodal to bimodal (Fig. 1B; [8, 9, 13, 51, 62]). Evolutionary branching, which has

been found to occur under a wide range of ecological and social interactions (like mutualism, helping, or com-

petition [27]), can help understand how adaptive polymorphism gradually emerges in populations that are

initially monomorphic.

Together, the functions s(z) and h(z) thus determine whether gradual evolution leads a population to a
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monomorphic uninvadable state under stabilising selection or to become polymorphic due to disruptive se-

lection (Fig. 1). There exist techniques based on invasion analysis to model the long-term fate of adaptive

polymorphism (e.g. how many morphs eventually coexist, their trait values and frequencies [9]) but here we

focus on whether polymorphism emerges or not.

2.3 All is well in a well-mixed and homogeneous world

One fundamental aspect of s(z) and h(z) to keep in mind is that they are defined from a mutant’s invasion

fitness (eq. 3), which is a measure of reproductive success at the level of the gene or the replicator that causes

the expression of the mutant phenotype. On conceptual and empirical grounds, it is however often desirable

to understand selection at the level of the individual. In populations that are homogeneous and well-mixed

(i.e. where variation in reproductive success is only associated to variation at the locus underlying the evolving

trait and where individuals interact and compete at random with respect to this locus), this is not a problem as

invasion fitness is equal to individual fitness. To see this, let Nt be the number of mutant individuals at some

demographic time point t . Invasion fitness is defined according to the dynamical equation Nt+1 = ρ(zm, z)Nt

(as invasion fitness is the geometric growth rate). But this dynamical equation can equivalently be written as

Nt+1 = w(zm, z)Nt , (7)

where w(zm, z) is individual fitness: the expected number of direct descendants produced between two time

points by a mutant with trait value zm, when the resident population expresses z. It is typically only a matter

of bookkeeping to piece together such an individual fitness function w(zm, z) for a given scenario, including

where interactions are frequency- and density-dependent. This in turn allows us to straightforwardly proceed

with the analysis described in section 2.2 and gain insights into the outcome of evolutionary dynamics, in par-

ticular whether disruptive selection leads to the emergence of polymorphism (see Appendix A.1 for a worked

out example).

The equivalence between invasion and individual fitness means that in an uninvadable population, the ex-

pressed strategy maximises individual fitness (against itself, as in eq. 1). This offers a clear view on adaptation

in well-mixed and homogeneous populations: selection leads to the expression of genetic traits that maximise

the reproductive success of its bearer (in the absence of genetic conflicts). In fact, if individual fitness increases

with a single intermediate quantity, such as fecundity, or in the context of evolutionary games, material payoff

resulting from social interactions, then any z∗ that maximises payoff also maximises individual fitness, having

s(z) = ∂w(zm, z)

∂zm

∣∣∣∣
zm=z

∝ ∂π(zm, z)

∂zm

∣∣∣∣
zm=z

, and h(z) = ∂2w(zm, z)

∂zm
2

∣∣∣∣
zm=z

∝ ∂2π(zm, z)

∂zm
2

∣∣∣∣
zm=z

, (8)

where π(zm, z) is the payoff obtained by a mutant individual in a resident population (Appendix A.2 for details).

This is the basis of many optimization models in evolutionary ecology, which rather than seeking maximums of

individual fitness, seek maximums of such fitness proxies, like fecundity or prey caught or rate of calorie intake
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[e.g. 63, 64]. Eq. (8) is also relevant from an empirical point of view. As individual fitness is hard to estimate

in natural populations, assays typically turn to fitness proxies, such as body weight, number of females mated,

clutch size or number of seeds produced. According to eq. (8), information on the nature of selection can

be yielded by performing a quadratic regression of such proxies on individual trait values (with directional

selection given by the linear term and disruptive selection by the quadratic term of the regression [65, 66]).

Notwithstanding remaining technical challenges for adaptive dynamics in homogeneous and well-mixed pop-

ulations, the equivalence between fitness at the level of the gene and of the individual thus yields many insights

into trait evolution and its resulting ecological or demographic transformations (Appendix A.3 for an example

of such insight). Most natural populations, however, are not homogeneous or well-mixed. In the next two

sections, we review how invasion analyses can be performed for more complex populations. In particular,

we provide expressions for directional (s(z)) and disruptive selection (h(z∗)) in terms of individual fitness to

be compared with eq. (8). This aims to facilitate cross-talk among models with individual fitness as common

vocabulary, and ultimately aid with the interpretation of adaptation.

3 Class-structured populations: reproductive values as the exchange rate

between fitness components

Populations often show heterogeneity among its individuals: there can be males and females, individuals of

different ages or stages, individuals in different physiological states, or individuals living in different habitats.

This is more generally referred to as class-structure and such structure is relevant for evolution when the fitness

effect of evolving traits depends on the class of the individual expressing it. In this section, we collect together

existing equations as well as present some new ones for understanding selection under three common types

of class-structure (but where interactions are still random with respect to the evolving locus, i.e. population is

well-mixed). Technical details can be found in Appendix B.

3.1 Matrix population models

We first consider a population that is divided into a finite number M of discrete classes (e.g. males and females,

juvenile and mature individuals, or subordinate and dominant individuals) such that mutant dynamics can be

modelled by a matrix equation,

Nt+1 =W (zm, z) ·Nt (9)

where entry i ∈ {1, . . . , M } of the vector Nt gives the number of mutants in class i at some time t , and the (i , j )-

entry of the M×M matrix, W (zm, z), which we denote by wi j (zm, z), is the expected number of mutants in class

i produced by a mutant in class j between two time points (Table II for key symbols used in sections 3 and 4).

The matrix W (zm, z) is sometimes referred to as the mean matrix in the theory of multi-type branching process.

From this theory, we know that invasion fitness ρ(zm, z) is given by the leading eigenvalue of matrix W (zm, z)
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(i.e. the mutant goes extinct with probability one if and only if this eigenvalue is less or equal to one [46]). While

direct analysis of this eigenvalue is possible (at least numerically), it does not afford much interpretation as is.

To gain greater biological traction, we first introduce the right eigenvector q(zm, z) of W (zm, z), normalised

such that its entries sum to one (
∑M

j=1 q j (zm, z) = 1), in which case q j (zm, z) corresponds to the asymptotic

frequency of mutants in class j . Second, we let v◦ be the left eigenvector of the mean matrix W ◦ = W (z, z)

under neutrality (whose (i , j )-entry gives the expected number of individuals in class i produced by an indi-

vidual in class j in the resident population at demographic equilibrium). Throughout, a superscript ◦ indicates

neutrality, i.e. when zm = z. Quantities with a superscript ◦ should thus be read as functions of the resident

trait z (e.g. v◦ is a function of z) but we do not write such dependency explicitly to avoid notational clutter.

We normalise v◦ such that v◦ · q◦ = 1, where q◦ is the right eigenvector of the neutral mean matrix W ◦. The

i -entry of the left eigenvector v◦ can then thought of as the “reproductive value” of an individual in class i : it

is its relative asymptotic demographic contribution to the future of the population in the absence of selection

(this left eigenvector ensures that the invasion fitness of a neutral mutant is equal to one, i.e. that ρ(z, z) = 1,

Appendix B.1.1 for more details).

With the above notation, it turns out that the selection gradient can be expressed as

s(z) =
M∑

i=1

M∑
j=1

v◦
i

∂wi j (zm, z)

∂zm
q◦

j (10)

(here and hereafter when s(z) is on the left-hand-side of the equation, then the derivatives are always evaluated

at the resident, zm = z; e.g. [22, 51, 67, 68]; Appendix B.1.2 here for derivation). Eq. (10) is most easily read from

right to left, starting with q◦
j which is the probability that a randomly sampled individual from a resident lineage

(i.e. whose members express z) is in class j . The fitness derivative meanwhile is the effect of a substitution from

resident to mutant trait in an individual of class j on the expected number of offspring in class i produced by

this individual (including itself if it survives and changes class when i ̸= j ). Finally, each offspring is weighted

by its reproductive value v◦
i , which is its asymptotic contribution to the future of the population (and thus takes

into account the demographic consequences of such offspring).

The implications of eq. (10) are intuitive: selection favours most the expression of traits that increase the pro-

duction of offspring with high reproductive value in individuals that are more common. Take for instance a

situation in which individuals are of either high or low condition. Suppose this is randomly determined at birth

with the probability of low condition being greater (so that low condition is more common), but that individu-

als in high condition have greater fecundity (so that they have greater reproductive value). Gradual evolution in

this case will tend to shape traits that favour most the production of high condition offspring by low condition

individuals. Conversely, selection is weakest on traits that increase the production of low condition offspring

by high condition individuals in this scenario. In the context of social interactions, these considerations and

eq. (10) are most relevant in the study of asymmetric games where class determines the payoff consequences

of different actions by different players [e.g. 69, 70].
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Once a population expresses a singular strategy z∗, selection may be stabilising or disruptive depending on

h(z∗), which we show in Appendix B.1.3 can be decomposed as the sum of two biologically relevant terms,

h(z∗) = hw(z∗)︸ ︷︷ ︸
non-linear

fitness effects

+ 2× hq(z∗)︸ ︷︷ ︸
context×fitness

synergy

, (11)

with

hw(z∗) =
M∑

i=1

M∑
j=1

v◦
i

∂2wi j (zm, z)

∂zm
2 q◦

j

hq(z∗) =
M∑

i=1

M∑
j=1

v◦
i

∂wi j (zm, z)

∂zm
× ∂q j (zm, z)

∂zm
,

(12)

where here and hereafter for all the components of h(z∗) the derivatives are always evaluated at the (singular)

resident zm = z = z∗ [see 22, 37, 71, for other ways of expressing quadratic selection in matrix populations mod-

els]. The first term, hw(z∗), is conceptually equivalent to disruptive selection in an homogeneous population

(eq. 8), saying that selection tends to be disruptive when the fitness of an individual increases more than lin-

early with the expression of its own trait. Under class-structure however, these effects depend on the frequency

of the individuals that express them and the reproductive value of their offspring (as in eq. 10). The second

term of eq. (11), hq(z∗), is unique to class-structured populations. It reveals that disruptive selection may be

driven by the combined effects of a trait change on: (i) the fitness of a focal individual in a given class (say j ,

∂wi j (zm, z)/(∂zm)); and (ii) on the probability that the mutant causing this trait change is in an individual in

that class (∂q j (zm, z)/(∂zm)). More intuitively perhaps, hq(z∗) says that disruptive selection may occur when

carrying the mutant simultaneously increases (i) the probability of being in a certain class say j ; and (ii) fitness

in that class j . Disruptive selection may thus be driven by synergistic effects between the context in which the

mutant is expressed and fitness in that context. The polymorphism that emerges under such disruptive selec-

tion is expected to lead to the coexistence of different morphs that specialise in different classes. This will be

made more explicit in the next section where we focus on age-structure.

3.2 Age-structure

For many animals, especially endotherms like humans, a major axis of variation is age which is associated

with many physiological, behavioural and morphological differences [22, 44, 72]. In discrete time, evolution in

age-structured populations can be modelled using the formalism summarised in the preceding section. Since

offspring are all born in the same age and age increases linearly with time, the matrix W (zm, z) in eq. (9) be-

comes a so-called Leslie matrix (Appendix B.2.1), whose special form leads to further insights that we review

here.

We first introduce some notation to describe evolution in an age-structured population. Let ba(zm, z) be the

expected number of offspring of age 1 produced by a mutant of age a ∈ {1, . . . , M } with trait zm in a resident pop-
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ulation with trait z (where M is maximum age); pa(zm, z) be the probability that a mutant survives from age a to

a+1 (so that µa(zm, z) = 1−pa(zm, z) is the probability that it dies); la(zm, z) = p1(zm, z)p2(zm, z) . . . pa−1(zm, z)

be the probability that a mutant survives at least until age a; T ◦ =∑M
a=1 al◦ab◦

a be the generation time in a pop-

ulation monomorphic for z, i.e. the expected age of a parent; and finally,

ṽ◦
a =

M∑
k=a

l◦k
l◦a

b◦
k (13)

be the expected number of offspring that an individual produces over the rest of its lifetime given it has survived

to age a in a population monomorphic for z. This quantity ṽ◦
a can thus be seen as the “current reproductive

value” of an individual of age a in the resident population (i.e. the reproductive value that an individual of age

a currently has at age a). Current reproductive value ṽ◦
a is in fact proportional to the reproductive value v◦

a , as

defined in the above section (Appendix B.2.2 for connection).

Using the above notation, the selection gradient can be expressed as,

s(z) = 1

T ◦
M∑

a=1

[
∂ba(zm, z)

∂zm
− ṽ◦

a+1
∂µa(zm, z)

∂zm

]
l◦a (14)

([44, 73]; Appendix B.2.3 here for derivation). This shows that as expected, selection favours an increase in

the fecundity (ba(zm, z)) and a decrease in mortality (µa(zm, z)) at each age a. The strength of selection on

these age-specific fitness components however is proportional to the probability of surviving till that age under

neutrality, l◦a , which can be thought of as the probability that the effect of a mutant at age a is expressed and

thus exposed to selection. Since l◦a always decreases with a, selection tends to be weaker on later acting than on

early acting mutants [73]. This is always true for mutants affecting fecundity (ba(zm, z)). For mutants affecting

mortality (µa(zm, z)), selection strength is further proportional to the remaining number of offspring that an

individual is expected to produce if it survives to the next age, ṽ◦
a+1 (i.e. the current reproductive value, eq. 13).

This quantity may in fact increase with age, for instance when maturity occurs later in life. Selection on a

mutant that reduces mortality may therefore become stronger as its effects get closer to age at maturity. These

well-known results lay the basis of the evolution of life-history traits, especially of senescence [44, 72, 73], and

are relevant to age-specific social behaviour [e.g. 74].

Less well-trodden is disruptive selection in an age-structured population, which in fact we have not seen any-

where expressed as eq. (11), together with

hw(z∗) = 1

T ◦
M∑

a=1

[
∂2ba(zm, z)

∂zm
2 − ṽ◦

a+1
∂2µa(zm, z)

∂zm
2

]
l◦a

hq(z∗) = 1

T ◦
M∑

a=1

[
∂ba(zm, z)

∂zm
− ṽ◦

a+1
∂µa(zm, z)

∂zm

]
∂la(zm, z)

∂zm

(15)

(Appendix B.2.4 for derivation; e.g. [75] for other approaches to disruptive selection in age-structured popula-

tions). The term hw(z∗) depends on how age-specific fitness components change non-linearly with trait (with

age-specific effects weighted accordingly, as in eq. 14). The second term hq(z∗) depends on how fecundity
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and mortality change with trait expression at a given age a (the term within square brackets), multiplied to the

trait effect on the probability of surviving till that age (∂la(zm, z)/(∂zm)). To see the potential relevance of this,

consider a scenario where there are two age classes and the evolving trait z is the effort invested into fecun-

dity at age 1. Suppose that expanding more effort diverts resources from other fitness components, leading

to increased mortality at age 1 and decreased fecundity at age 2. An increase in z thus results in a decrease

in both the probability of surviving till age 2 (i.e. ∂l2(zm, z)/(∂zm) < 0) as well as fecundity at that age (i.e.

∂b2(zm, z)/(∂zm) < 0), so that ∂l2(zm, z)/(∂zm)×∂b2(zm, z)/(∂zm) > 0 causing an increase in hq(z∗) and thus to

selection being disruptive. In fact, we show in Appendix B.2.5 that polymorphism may emerge in this scenario

when individuals compete across age-classes. Disruptive selection in that case leads to the coexistence of two

highly-differentiated morphs: one that reproduces at age 1 and then dies, and another that reproduces only at

age 2. Beyond this specific scenario, eq. (15) reveals how age-structure opens pathways for disruptive selection

and thus for the maintenance of genetic variation within populations.

3.3 Physiological structure

Age-specific fitness effects of traits are often mediated by some other characteristics of an organism, such as

size, knowledge or another (often physiological) attribute, which can depend on an organism’s past behaviour,

environment or ontogeny. In order to characterise trait evolution under such cases, let x(a) ∈R denote the “in-

ternal state” of a mutant individual at age a and let age a ∈R now be a continuous variable (we use continuous

time here as it connects more straightforwardly to existing models and methods). The state x(a) could be the

size of this individual, its foraging skill, or its investment into cooperation at age a. These individual character-

istics develop over time in a way that depends on an individual’s traits or behaviours. To model such ontogeny,

let us assume all individuals are born with the same initial state x(0), which then develops over age according

to a differential equation,

dx(a)

da
= g (zm, z, x(a)) (16)

where the function g (zm, z, x(a)) gives the rate of change in the internal state of a mutant. This rate of change

may depend on the trait zm expressed by the mutant, the traits of others it interact with (i.e. the resident z),

and its current state x(a). Eq. (16) also allows the rate of change of the internal state to depend on the entire

distribution of resident individuals across states via the resident trait z (e.g. the distribution of sizes shown in

the resident population). A wide range of models in behavioural ecology and life-history theory can be captured

conceptually by eq. (16) (e.g. behavioral response rules, learning rules, neural networks [72, 76–90]). Some of

these models conceive the evolving trait z itself as a function of age or state (e.g. writing z(a, x(a)) and letting

this function evolve); we focus here on the case where the trait z is fixed throughout an individual’s lifetime

(but see Box 1 for directional selection on age-and state-dependent traits).

The continuous time nature of age calls for several modifications in the way relevant quantities are defined

(in contrast to section 3.2 where age is discrete). First, the fecundity and mortality of an individual at a given
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age are now rates. These rates can depend on an individual’s trait, that of conspecifics, and the individual’s

current state, and so are written as b(zm, z, x(a)) and µ(zm, z, x(a)) for a mutant at age a (like eq. 16, these may

also depend on the distribution of resident individuals across states through the dependence on resident z).

Survival l (a) to age a is then defined according to a differential equation,

dl (a)

da
=−µ(zm, z, x(a))l (a), with l (0) = 1. (17)

Generation time in the resident monomorphic population now reads as T ◦ = ∫ M
0 a b(z, z, x◦(a))l◦(a)da, where

x◦(a) and l◦(a) are the internal state and survival of resident individuals at age a, obtained by evaluating

eqs. (16) and (17) at monomorphic resident population for z. We also define

ṽ◦(a) ≡ ṽ◦(a, x◦(a)) =
∫ M

a

l◦(a′)
l◦(a)

b(z, z, x◦(a′))da′ (18)

as current reproductive value, i.e. the expected number of offspring that an individual produces over the rest

of its lifetime given it has survived to age a (and is in state x◦(a)) in a population monomorphic for z. This is

conceptually equivalent to eq. (13), except that here current reproductive depends on state x◦(a) (for presenta-

tion purposes though, we do not write this dependence and use ṽ◦(a) for short; Appendix B.3.2 for derivation

of eq. 18).

Using these definitions and methods from optimal control theory [86, 89, 91, 92], directional selection on a trait

z that influences how an individual’s internal state develops with age (according to eq. 16) can be decomposed

as,

s(z) = 1

T ◦

∫ M

0

(
∂b(zm, z, x(a))

∂zm
− ṽ◦(a)

∂µ(zm, z, x(a))

∂zm
+ ∂ṽ◦(a)

∂x◦(a)

∂g (zm, z, x(a))

∂zm

)
l◦(a)da (19)

(eq. 19 in [90] for the more general case in group-structured population and Appendix B.3 here for derivation).

The first two terms of eq. (19) are equivalent to eq. (14), giving directional selection on age-specific fecundity

and mortality. More interestingly, the last term within brackets of eq. (19) reveals that selection now also de-

pends on how the trait influences the instantaneous rate of change in internal state (∂g (zm, z, x(a))/(∂zm)),

and in turn how a change in internal state affects current reproductive value (∂ṽ◦(a)/(∂x◦(a))). To intuit the

relevance of this, it is useful to see ∂ṽ◦(a)/(∂x◦(a)) as a measure of the fitness value of future reproduction

relative to current reproduction owing to a change in internal state at age a. The last term of eq. (19) then

says that in a situation where for example x(a) is size at age a and z controls the investment into growth at

each age, selection favours greater investment into growth even at the expense of fecundity when one unit

invested into growth yields greater future reproduction relative to that unit invested into current reproduc-

tion (i.e. ∂ṽ◦(a)/(∂x◦(a))×∂g (zm, z, x(a))/(∂zm) >−∂b(zm, z, x(a))/(∂zm)). In the context of social interactions,

eq. (19) would for instance be useful to understand directional selection on reactive strategies [93, 94], where

x(a) is the level of cooperation at age a and the trait zm determines how an organism reacts to cooperation by

its social partners. The last term of eq. (19) in this example would capture how selection at age a depends on

the future benefits of an increase in cooperation at that age.
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Disruptive selection, meanwhile, can be decomposed as eq. (11), with

hw(z∗) = 1

T ◦

∫ M

0

(
∂2b(zm, z, x(a))

∂zm
2 − ṽ◦(a)

∂2µ(zm, z, x(a))

∂zm
2 + ∂ṽ◦(a)

∂x◦(a)

∂2g (zm, z, x(a))

∂zm
2

)
l◦(a)da

hq(z∗) = 1

T ◦

∫ M

0

[(
∂b(zm, z, x(a))

∂zm
− ṽ◦(a)

∂µ(zm, z, x(a))

∂zm

)
∂l (a)

∂zm︸ ︷︷ ︸
change in age

+hq,x(a)
∂x(a)

∂zm︸ ︷︷ ︸
change in state

]
da

(20)

(Appendix B.3.4 for derivation). At a broad level, hw(z∗) and hq(z∗) in eq. (20) have the same interpretation

as hw(z∗) and hq(z∗) in eqs. (12) or (15): hw(z∗) depends on the nonlinear effects of the trait on individual

fitness components, while hq(z∗) depends on how the trait affects both: (i) the proclivity of having a certain

age and internal state; and (ii) fitness when in that state. Both hw(z∗) and hq(z∗) however contain extra terms in

comparison to the scenario where only age matters (eq. 15). This is because in addition to age, an individual’s

state now also depends on x(a), which opens new pathways for disruptive selection. The extra term in hw(z∗)

in eq. (20) (the last term within the brackets) depends on how fitness changes non-linearly with trait expression

via a change in state dynamics. This reveals for instance that disruptive selection may be driven by accelerating

effects of a trait change on state dynamics at a certain age (∂2g (zm, z, x(a))/(∂zm)2 > 0 e.g. because an extra unit

of resources invested in growth at age a generates a greater than linear increase in growth rate) when such a

change improves current reproductive value (∂ṽ◦(a)/(∂x◦(a)) > 0).

The first part of hq(z∗) in eq. (20), labelled “change in age”, is conceptually equivalent to hq(z∗) in eq. (15), i.e.

capturing the effect of change in representation in a given age class a (through ∂l (a)/(∂zm)) but with internal

state dynamics left unchanged (so with x(a) of a resident). The effect of changing internal state is in the second

term of hq(z∗) in eq. (20), labelled “change in state”. This consist of the product between how a trait change

influences the internal state at age a, ∂x(a)/(∂zm), with hq,x(a), which can be thought of as the second-order

fitness effect of a change in internal state at age a (see eq. II.A in Box II for details). As described in Box II,

there are several ways that state can influence fitness in a physiologically structured population, such as via

interaction effects between trait and state on vital rates. This suggests that disruptive selection can readily

emerge owing to a change in state and its knock-on fitness effects. Such disruptive selection would favour

polymorphism in the evolving trait z and as a result, also in internal state across ages (x(a)).

We have illustrated eq. (20) (and eq. II.A in Box II) with examples from life-history such as resource allocation

problems as those are the most straightforward applications. But since all vital rates (fecundity b, mortality µ

and growth g ) depend on both mutant and resident traits (zm and z), eqs. (20) and (II.A) can of course be used

to understand disruptive selection on traits that influence social interactions. In fact, since the vital rates may

depend on the resident internal state and its distribution across resident individuals, eqs. (20) and (II.A) can be

applied to social interactions mediated by internal state, such as where larger individuals are more likely to win

contests for resources.

Together, the equations for disruptive selection that we have collected in this section (eqs. 12, 15, and 20) re-

veal how there are several alternative non-exclusive paths for a trait to become polymorphic in heterogeneous
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populations, and how these paths depend on the nature of the heterogeneity. In particular, population hetero-

geneity creates conditions such that individuals may specialise in different contexts (class, age, size, habitat)

when trait expression simultaneously increases the proclivity of being in a certain context and fitness in that

context (what we have labelled as context × direct synergy in eq. 11). This may help explain within-population

diversity in traits, such as life-history, sexual development, or habitat choice, that influence the context an

individual finds itself in, as well as diversity in social behaviours that are mediated by such heterogeneity.

4 Interactions under limited dispersal: the inevitable rise of relatedness

So far, all the scenarios we have explored assume that individuals interact and compete at random with re-

spect to the evolving locus. This facilitates analysis because in this case, a rare mutant only ever interacts with

residents so that mutant-mutant interactions can be ignored. In reality, carriers of a rare mutation may of-

ten interact with other carriers. This is obviously true for within-family interactions, such as parental care or

sib competition, but more generally whenever dispersal is limited (i.e. whenever individuals have a non-zero

probability of reproducing close to where they were born [95]). As a consequence of limited dispersal, indi-

viduals that are physically closer to one another, and thus more likely to interact, are also more likely to share

alleles that are identical-by-descent at homologous loci than individuals sampled at random in the population

[96]. This inevitably leads to interactions among rare mutants and to what is referred to as kin selection, which

occurs whenever a trait expressed by a focal individual affects the fitness of others who are genetically related

to the focal at the loci determining the trait [10, 51, 96, 97].

In this last section, we review directional and disruptive selection when dispersal is limited under the light of kin

selection. We consider the case where the population is subdivided among a large (effectively infinite) number

of groups which can be arbitrarily small. The main assumption is that these groups are equally connected to

one another (so that there is no isolation-by-distance): if an individual disperses and leaves its natal group, it is

equally likely to immigrate into any other group (as in the homogeneous island model of dispersal of [98], and

see [99], for its ecological equivalent). We focus on where there are no exogenous differences among groups

(e.g. no differences in environmental condition, [100] for an analysis of this).

The simplest model is where groups are all of the same fixed size n, and where other than expressing the mutant

or resident trait, individuals within groups are homogeneous. We detail the life cycle events that the model can

consider in Appendix C.1.1 and simply note here that as long as groups have constant size, variation in several

life cycle events are allowed, such as overlapping vs non-overlapping generations and dispersal via “migrant

pool” vs “propagule pool“ model (in the former, individuals disperse independently from one another whereas

in the latter, individuals disperse in groups as part of a propagule [101]). Describing selection in this model

requires an individual fitness function that takes into account group structure. We let ω(z•, z) be this function,

which gives the expected number of offspring produced by a focal individual with trait z• ∈ {zm, z} over one

demographic time period, when its groups neighbours on average express z (all groups other than the one
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in which the focal individual lives can be considered monomorphic for the resident z in an invasion analysis

but we do not write this dependency on z in ω(z•, z) for simplicity). In writing fitness in terms of the average

trait among its neighbours, we are assuming that the focal plays the field within groups. As a more general

alternative, fitness may depend on the trait of each individual neighbour, in which case ω(z•, z) is a first-order

approximation in ϵ= zm − z to this more complicated fitness function (Appendix C.1.2 for details).

Invasion fitness can be expressed in terms of the individual fitness function ω(z•, z) (eq. C-12 in Ap-

pendix C.1.2), from which we readily obtain the selection gradient,

s(z) = ∂ω(z•, z)

∂z•︸ ︷︷ ︸
direct effect, −C

+ R◦︸︷︷︸
relatedness

× ∂ω(z•, z)

∂z︸ ︷︷ ︸
indirect effect, B

, (21)

where R◦ is the probability that in a population monomorphic for the resident z, an individual randomly sam-

pled among the neighbours to a random focal individual belong to the same lineage as the focal (i.e. are

identical-by-descent, Appendix C.1.3 for derivation). R◦ thus corresponds to the standard coefficient of pair-

wise relatedness [51]. We can recognise in eq. (21) the well-known inclusive fitness effect or Hamilton’s rule

in gradient form [10, 19, 51, 102, 103]: the sum of (i) the direct fitness effect, i.e. the effect of a trait change

in a focal individual on its own fitness (which in a well-mixed population is the only effect that matters, eq. 8,

and which in Hamilton’s rule is typically written as a cost −C ); and (ii) relatedness-weighted indirect fitness

effect, i.e. the effect of a trait change in neighbours on focal fitness (written as a benefit B in Hamilton’s rule),

weighted by the probability that a neighbour and the focal both carry the same mutation (under neutrality).

Relatedness in eq. (21) thus quantifies mutant-mutant interactions and highlight their well-known evolution-

ary significance: interactions among relatives tend to favour the evolution of prosocial traits (i.e. traits such

that ∂ω(z•, z)/(∂z) > 0, [10, 51, 96]). The selection gradient eq. (21), which is written in terms of the individual

fitness function ω(z•, z) where individuals play the field within groups, also holds more generally for the case

where individual fitness depends on the trait of each individual neighbour (Appendix C.1.3 for details).

For group-structured populations, the selection gradient as in eq. (21) is significantly easier to handle mathe-

matically than working from first principles with invasion fitness (or other proxies such as the metapopulation

number, [104, 105]). This is because invasion fitness depends on the entire probability distribution that a mu-

tant is in a group with a given number of other mutants ([28, 36, 40, 104, 105]; eq. C-5 in Appendix here).

Eq. (21), by contrast, depends only on neutral relatedness, which is just one moment of this distribution as-

suming the mutant and resident have the same traits. There are at least two advantages to this. First there

exist standard techniques coming from coalescent theory to compute such relatedness coefficient ([51]; Ap-

pendix C.1.6 here for an example of such argument). Second, it is perhaps the only evolutionary parameter

presented in this review that can be easily and systematically estimated in natural populations. In fact, R◦ in

eq. (21) can be connected to the well-known FST measure of genetic differentiation [106] which can be esti-

mated from neutral markers [107]. Owing to its simplicity, empirical connections, and the biological insights

it affords, eq. (21) has been one of the most widely used expression to understand directional selection on an
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array of social behaviours, such as cooperation, sex-ratio, dispersal and many more [102].

More seldom seen is disruptive selection in terms of relatedness coefficient [40, 42, 100, 108–112]. Under the as-

sumption that individual fitness can be written as ω(z•, z), we show in Appendix C.1.4 that disruptive selection

is given by,

h(z∗) = hw(z∗)+2× hr(z∗)︸ ︷︷ ︸
social context×

fitness synergy

(22)

where

hw(z∗) = ∂2ω(z•, z)

∂z•2 +2R◦ ∂2ω(z•, z)

∂z•∂z
+K ◦ ∂2ω(z•, z)

∂z2

hr(z∗) = ∂ω(z•, z)

∂z

∂R(zm, z)

∂zm

(23)

in which K ◦ is the probability that two individuals, randomly sampled with replacement among the neighbours

to a focal individual, are identical-by-descent to the focal (in a population monomorphic for the resident z). K ◦

can thus be thought of as the tendency of interacting with more than one relative under neutrality. The quantity

R(zm, z), meanwhile, is the probability that a randomly sampled neighbour to a mutant individual with trait zm

in a resident population with trait z is also mutant (note how this measure of genetic structure is no longer

under neutrality and depends on the mutant trait zm). If individual fitness more generally depends on the trait

of each individual neighbour (so if individuals do not play the field and individual fitness cannot be written

simply asω(z•, z)), then the first term hw(z∗) consists of extra terms (as in e.g. [40, 109, 110]; Appendix C.1.5 for

details).

Eq. (22) highlights how disruptive selection can emerge from two pathways in group-structured populations.

The first, given by hw(z∗), depends on three second-order effects of traits on fitness among relatives: (i)

∂2ω(z•, z)/(∂z•)2 is how focal fitness changes non-linearly with its own trait (as in well-mixed populations,

eq. 3); (ii) ∂2ω(z•, z)/(∂z•∂z), weighted by relatedness R◦, is how focal fitness changes with joint changes in

its own trait and in the average trait among its neighbours; and (iii) ∂2ω(z•, z)/(∂z)2, weighted by K ◦, is how

focal fitness changes non-linearly with the average trait in neighbours. These two latter terms capture how

trait expression by different individuals within groups can influence focal fitness in a synergistic way (synergy

among the focal and the average neighbour with ∂2ω(z•, z)/(∂z•∂z); and synergy among two average neigh-

bours with ∂2ω(z•, z)/(∂z)2, [42] for further considerations on these). To see the possible relevance of such

synergy, consider for example a scenario where individuals can cooperate with one another and the evolv-

ing trait is the amount invested into cooperation and that joint cooperation has antagonistic effects on payoff

(such that ∂2ω(z•, z)/(∂z•∂z) < 0 as in e.g. the snowdrift game). In this case, interactions among relatives tend

to inhibit disruptive selection (i.e. h(z∗) decreases with R◦ [110]). Put differently, kin selection favours the evo-

lution of equal contribution among social partners in this scenario (Appendix C.1.6 for analysis; [42, 108, 109]

for similar inhibitory effect of limited dispersal in other models).
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The second pathway that can contribute to disruptive selection in group-structured populations, hr(z∗), de-

pends on the product of two quantities: (i) how a trait change in neighbours increases the fitness of the focal

individual (∂ω(z•, z)/(∂z)); with (ii) how a trait change increases the probability of interacting with other in-

dividuals also expressing this change, i.e. with relatives (∂R(zm, z)/(∂zm)). This reveals that selection favours

mutants that either: (a) increase the fitness of neighbours and the probability that these neighbours are also

mutants; or (b) decrease the fitness of neighbours and the probability that these neighbours are also mutants.

This effect of selection can thus be seen as the social equivalent of synergy among context and fitness obtained

in heterogeneous populations (hq(z∗) in eq. 11). In contrast to section 3 where context is the individual state

(e.g. sex, age, size or habitat) the mutant can be in, context here is the social environment, i.e. the frequency of

relatives in the group. To illustrate such synergy, we explore in Appendix C.1.7 an example where the evolving

trait is the amount invested into a common good that benefits the whole group but that such an investment

leads to a decreased propensity to disperse (e.g. due to functional trade-offs). As a result, a mutant that in-

vests more resources into cooperation disperses less and thus is more likely to interact with relatives. We show

that such a scenario readily leads to the emergence of two social morphs: one that cooperates and tends to

remain philopatric, and another that defects and disperses. These two are maintained due to the association

between social and dispersal behaviours allowing cooperators to preferentially benefit relatives and defectors

to preferentially harm non-relatives. Beyond this specific example, hr(z∗) suggests that when mutants can pref-

erentially interact with other mutants (or residents), disruptive selection favours diversity in social behaviours

[40, 111, 113–115].

Many social groups are not homogeneous. Colonies of eusocial insects have queens and workers, matriar-

chal societies of killer whales are composed of multiple generations, and primate groups are often governed

by complex dominance hierarchies. We discuss directional and disruptive selection in populations that are

subdivided into social groups, and where individuals belong different classes within groups, in boxes III and

IV, respectively. The expressions for selection in such heterogeneous social groups combine those of models

of class- (eqs. 10-12) and group-structure (eqs. 21-23). In particular, disruptive selection can emerge owing to

synergy of fitness with asocial as well as social context, laying the ground for the coexistence of morphs that

specialise in both types of contexts and thus for adaptive polymorphisms of many different natures.

5 Concluding remarks

Understanding phenotypic evolution when individuals interact has been at the core of evolutionary game the-

ory and of the theory of adaptive dynamics. These research programs have led to a well-established and robust

set of tools based on evolutionary invasion analyses that can tackle a wide range of questions in evolutionary

biology. Here, we reviewed two important pieces of this toolbox, directional s(z) and disruptive h(z) selection

in structured populations, which determine whether gradual evolution leads a population to an uninvadable

(i.e. evolutionarily stable) monomorphic state where all individuals express the same trait, or to become poly-

morphic through adaptive diversification (Fig. 1). As such, they constitute a useful platform to understand the
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conditions that favour phenotypic variation as adaptive polymorphism.

With the aim of facilitating connections between models and biological interpretation, we collected together

expressions of s(z) and h(z) in terms of individual fitness, extending previous reviews that focus on directional

selection (e.g. [51, 102, 103, 116] for s(z) in structured populations, including under isolation-by-distance).

Interpreting disruptive selection in terms of individual fitness brings together what we see as the strong points

of the related branches of theoretical evolutionary biology that are evolutionary game theory and adaptive

dynamics. The former has a long tradition of decomposing selection in a way to understand the different forces

at play in the evolution of social and life-history traits [5, 6, 51, 73, 96, 102, 117]. Most investigations, however,

stop at directional selection and do not determine whether polymorphism emerges (though see [40, 42, 100,

109–112]). By contrast, adaptive dynamics models typically study such emergence as well as its maintenance

(how many morphs, the traits they express, and their frequency, e.g. [9, 114, 118–121]). But the complexity of

the mathematical procedures involved in such studies and the fitness measures used often leave little room

for interpretation. In decomposing disruptive selection in biologically relevant components, we thus hope to

motivate yet further research to understand phenotypic variation in non-homogeneous populations, especially

in life-history traits and social behaviours that act either via direct interactions, or through indirect ecologically-

mediated interactions.

Linking invasion fitness, which is a measure of fitness at the level of the gene (or replicator) [29], to individ-

ual fitness in heterogeneous and non-randomly mixed populations requires taking into account the fact that

a gene may find itself in carriers in different states, who can in turn interact with other carriers and impact

their reproductive success. This is achieved by expressing invasion fitness of a mutant as a weighted average of

individual fitness over the distribution of states that a carrier of the mutant can be in ([28, 36, 117]; Appendix C

here). With class-structure, the appropriate weights turn out to be reproductive values [67], while the averag-

ing in group-structured populations invariably leads to the notion of relatedness as a measure of interactions

among carriers of genes that are identical-by-descent [51, 96]. Remarkably, it is sufficient to consider these

summary statistics in the resident population (i.e. under neutrality) to investigate the direction of selection

s(z): “a gift from God” [122] that bypasses many computational headaches. To characterise disruptive selec-

tion h(z), however, requires considering how the mutant perturbs the distribution of states an individual carrier

can be in (e.g. [40, 100, 109, 110]). As we hope to have conveyed here, these perturbations inform on the nature

of disruptive selection. In fact, we suggest that there are two main pathways that can favour polymorphism

in trait expression: (i) when individual fitness increases more than linearly with trait expression (hw(z), which

is the only pathway in well-mixed and homogeneous populations); (ii) when trait expression simultaneously

increases the probability that an individual is in a given context (e.g. a given age, sex, habitat, size or social en-

vironment) and fitness in that context (hq(z) and hr(z); Fig. 2 for summary). Population-structure thus opens

novel pathways for the operation of disruptive selection, leading to polymorphisms that have characteristics

unique to these populations. More specifically, class- and group-structure lay the ground for the coexistence of

genotypes that specialise in the different contexts that a genotype can reside in, be it the individual state that
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its carrier is in (e.g. its age, sex or size), or the socio-genetic environment of its carrier (e.g. with or without

relatives).

Concerning polymorphism, we have focused our attention on disruptive selection h(z), as this constitutes the

more recent advances in the literature. It is however important to keep in mind that for phenotypic diversity to

emerge, it is also necessary that the population first converges to a singular strategy, i.e. that condition eq. (5)

holds. This condition, together with the requirement that h(z∗) > 0, highlights that polymorphism requires

∂2ρ(zm, z)/(∂zm∂z) to be sufficiently negative (when zm = z = z∗). Similar changes in mutant and resident traits

must thus lead to a decrease in mutant fitness at the singular strategy. More intuitively perhaps, interactions

among mutants and residents must have antagonistic effects on mutant fitness (which for instance is the case

when interactions lead to payoff that follow the Snowdrift or Hawk-Dove game).

Owing to time and space constraints, many other results that are relevant to the adaptive dynamics of social be-

haviour had to be left out. We have for instance ignored the effect of changing or stochastic environments and

oscillatory or chaotic population dynamics and finite population sizes (e.g. [21, 123–128]). We have also largely

left out the influence of trait evolution on ecological or demographic variables that can feedback on selection

and lead for instance to evolutionary suicide (though see Appendix A.3; [13, 129–131]). These feedbacks are

particularly relevant under limited dispersal as they lead to inter-temporal mutant-mutant interactions (e.g.

when individuals deplete local resources and this disproportionately influences relatives in the future through

ecological inheritance [132, 133]), whose implications are best understood under the light of kin selection (e.g.

[134–138]). Finally, in the context of physiological and age-structure, we have not addressed the complications

that arise when individuals can be born in different initial internal states (e.g. [139]).

These omissions and many others aside, we hope this review provides a basic introduction on how to model

and understand Darwinian evolution in non-trivial populations, where density- and frequency-dependence

interactions inevitably take place. More broadly, the forms of directional and disruptive selection presented

here should help see the connections between fundamental branches of evolutionary biology, from life-history

and evolutionary developmental biology, to social evolution and evolutionary ecology, and thus ultimately

facilitate the further integration of these branches.
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Box I. Directional selection on age- and state-dependent expression: the moulding of plastic traits

The selection gradient in eq. (19) gives the fitness effect of a mutant trait zm (e.g. the proportion of re-

sources allocated to growth) that influences a fitness-relevant state x(a) (e.g. size at age a) that changes

with the age a of an individual (according to a dynamical system eq. 16). The trait zm, however, is as-

sumed to be fixed over an organism’s lifetime in eq. (19). A more complicated problem is when the

evolving trait z is itself a function, either of age (so-called “open-loop controls”; e.g. age-dependent

resource allocation to growth) or of both age and state (“closed-loop controls”; e.g. size-dependent

aggression level). Such traits are more colloquially said to be plastic ([140]; or function-valued, e.g.

[114, 141–145]). As it turns out, directional selection on such traits takes a similar form to eq. (19),

revealing that singular strategies must satisfy the following balance condition at each age a:

∂b(zm(a), z(a), x(a))

∂zm(a)
= ṽ◦(a)

∂µ(zm(a), z(a), x(a))

∂zm(a)
− ∂ṽ◦(a)

∂x◦(a)

∂g (zm(a), z(a), x(a))

∂zm(a)
, (I.A)

where zm(a) is trait expression at age a of a mutant (and z(a) of a resident), which may be writ-

ten as a function of age only, say zm(a) = u(a) for open-loop controls, or of both age and state, say

zm(a) = u(a, x(a)) for closed-loop controls (eq. B-148 in Appendix B.3.6; eq. 29 in [89]). Condition

eq. (I.A) reveals for instance that selection favours an increase in current reproduction (left hand side)

only if it exceeds the expected loss in future reproduction (right hand side) due to an increase in cur-

rent mortality and a decrease in the current rate of change of internal state (e.g. increasing fecundity by

investing less into cellular repair and growth). In contrast to eq. (19), selection on age a is independent

from the probability of surviving to that age, meaning that where possible, selection favours traits that

optimise life-history for each age a.

Interestingly, strategies that are age- and state-dependent (i.e. open- and closed-loop controls) evolve

to produce the same plastic phenotypes in (deterministic) well-mixed populations [89]. By contrast, in

group-structured populations where individuals interact locally through their state (e.g. size dependent

competition for light in plants), age- and state-dependent strategies can lead to different traits. This is

because when individuals are able to respond to their own state and that of others, selection favours

anticipating the future actions of others (e.g. when growing larger others might respond by growing

even larger). This “anticipation” is taken into account in the term ∂ṽ◦(a)/(∂x◦(a)) in the selection gra-

dient (Appendix B.3.6; [89] for more details; also [36, 84, 89, 90] for models with state-modulated local

interactions). We only present results regarding directional selection of plastic traits here as disruptive

selection for these traits has not yet been worked out, needing careful consideration of the nature of

phenotypic deviation ([143] for further discussion).
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Box II. Second-order fitness effects of a state change in physiologically-structured populations

Disruptive selection in physiologically-structured populations (eq. 20, section 3) depends on the prod-

uct between the effect of a change in trait expression on internal state at age a (∂x(a)/(∂zm)) and

hq,x(a) =
(
∂b(zm, z, x(a))

∂x(a)
− ṽ◦(a)

∂µ(zm, z, x(a))

∂x(a)

)
∂l (a)

∂zm

+
(
∂2b(zm, z, x(a))

∂zm∂x(a)
− ṽ◦(a)

∂2µ(zm, z, x(a))

∂zm∂x(a)
+ ∂ṽ◦(a)

∂x◦(a)

∂2g (zm, z, x(a))

∂zm∂x(a)

)
l◦(a)

+ 1

2

(
∂2b(zm, z, x(a))

∂x(a)2 − ṽ◦(a)
∂2µ(zm, z, x(a))

∂x(a)2 + ∂ṽ◦(a)

∂x◦(a)

∂2g (zm, z, x(a))

∂x(a)2

)
∂x(a)

∂zm
l◦(a),

(II.A)

where each line corresponds to a different fitness effect of a change in internal state x(a) at age a. (i)

The first line of hq,x(a) depends on how a change in state at age a affects fecundity and mortality at

that age, multiplied to the effect of a trait change on the probability of surviving till then (∂l (a)/(∂zm)).

Consider for instance a model where x(a) is size and zm controls the investment into growth. Under

the assumption that growth trades off with survival (so that ∂l (a)/(∂zm)× ∂x(a)/(∂zm) < 0), this first

line multiplied to ∂x(a)/(∂zm) would be positive and thus favour disruptive selection when vital rates

decrease with size at the singular strategy (so that the term within brackets in the first line of eq. II.A

is negative). (ii) The second line of hq,x(a) depends on the interaction effects of the evolving trait and

internal state on fitness (captured by the cross derivatives with respect to zm and x(a)). To illustrate the

potential implications of this, let us continue with the previous example where x(a) is size and zm con-

trols the investment into growth. Disruptive selection could occur because the fitness cost of investing

resources into growth decreases with size (so that the term within brackets in the second line of eq. II.A

is negative and its product with ∂x(a)/(∂zm) < 0 is positive). (iii) The third line of hq,x(a) depends on the

non-linear effects of a change in state on fitness components. With x(a) as size for example, the third

line would be positive where mortality decreases with body size in an accelerating manner (such that

∂2µ(zm, z, x(a))/(∂x(a))2 < 0, e.g. because individuals are increasingly better at fending off predators

with size). More broadly, eq. (II.A) shows there are multiple ways for state to influence fitness and thus

potentially favour disruptive selection.
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Box III. Directional selection in heterogeneous social groups: “How to make a kin selection model” [117]

Consider a population subdivided into social groups and where individuals belong to M different

classes within groups (e.g. age, sex, social rank as in section 3.1). To describe the fitness of a focal

individual in this model, we first denote by zk the average trait expressed among the neighbours to this

focal that belong to class k. For short, we collect these averages in the vector z = (z1, . . . , zM ). We then

let ωi j (z•, z) be the expected number of offspring in class i produced by a focal individual in class j

with trait z• when its group-neighbours express z on average (Appendix C.2.1 for details). As shown

previously [28, 51, 117], the selection gradient for this model can be expressed as,

s(z) =
M∑

i=1

M∑
j=1

v◦
i

[
∂ωi j (z•, z)

∂z•
+

M∑
i ′=1

∂ωi j (z•, z)

∂zi ′
R◦

i ′| j

]
q◦

j (III.A)

where v◦
i is the reproductive value of individuals in class i , R◦

i ′| j is the probability that a randomly sam-

pled neighbour in class i ′ to a focal individual in class j is identical-by-descent to the focal, and q◦
j

is the probability that a randomly sampled individual is in class j (all three quantities in a popula-

tion monomorphic for the resident z; Appendix C.2.2 for our derivation of eq. III.A where we clarify

some of the arguments used by [117]). In a well-mixed population (where R◦
i ′| j = 0 for all i ′ and j ),

the selection gradient reduces to the one for class-structured populations (eq. 10), as expected. With

limited dispersal and interactions among relatives, selection further depends on indirect fitness effects

(∂ωi j (z•, z)/(∂zi ′ )). As highlighted by eq. (III.A), these indirect fitness effects tend to favour prosocial be-

haviours, in particular towards individuals that produce offspring with high reproductive value. More

generally, eq. (III.A) allows us to understand social evolution within heterogeneous groups and thus un-

der asymmetric interactions which can lead to counter-intuitive situations (i.e. where payoff depends

on class, e.g., [69, 70, 146, 147]).
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Box IV. Disruptive selection in heterogeneous social groups: where individual and social context can

drive polymorphism

Like directional selection (eq. III.A), disruptive selection in heterogeneous social groups combines ele-

ments from class- and group-structure (i.e. from eqs. 12 and 23). In fact, we show in Appendix C.2.3 that

under the assumption that the expected number of offspring in class i produced by a focal individual

in class j with trait z• can be written as ωi j (z•, z), where z = (z1, . . . , zM ) collects the average trait zk

among neighbours in class k (i.e. under the assumption that individuals play the field within groups),

disruptive selection can be decomposed into,

h(z∗) = hw(z∗)+2hr(z∗)+2hq(z∗). (IV.A)

Briefly, the first term consists of second-order fitness effects weighted by reproductive value and relat-

edness,

hw(z∗) =
M∑

i=1

M∑
j=1

v◦
i

[
∂2ωi j (z•, z)

∂z•2 +2
M∑

i ′=1

∂2ωi j (z•, z)

∂z•∂zi ′
R◦

i ′| j +
M∑

i ′=1

M∑
i ′′=1

∂2ωi j (z•, z)

∂zi ′∂zi ′′
K ◦

i ′,i ′′| j

]
q◦

j , (IV.B)

where K ◦
i ′,i ′′| j is the probability that in a population monomorphic for the resident z, two individuals in

classes i ′ and i ′′ randomly sampled with replacement among the neighbours to a random focal indi-

vidual in class j are identical-by-descent to the focal. The second term,

hr(z∗) =
M∑

i=1

M∑
j=1

M∑
i ′=1

v◦
i

∂ωi j (z•, z)

∂zi ′

∂Ri ′| j (zm, z)

∂zm
q◦

j , (IV.C)

depends on the trait’s effect on relatedness, as Ri ′| j (zm, z) is the asymptotic probability that a randomly

sampled neighbour in class i ′ to a mutant individual in class j with trait zm in a resident population

with trait z is also mutant. Finally, the third term participating to disruptive selection,

hq(z∗) =
M∑

i=1

M∑
j=1

v◦
i

[
∂ωi j (z•, z)

∂z•
+

M∑
i ′=1

∂ωi j (z•, z)

∂zi ′
R◦

i ′| j

]
∂q j (zm, z)

∂zm
, (IV.D)

depends on the trait’s effect on the probability on being in a certain class, ∂q j (zm, z)/(∂zm). All three

terms thus have similar interpretations than those emerging in models of just class- or just group-

structure (eqs. 12 and 23). In particular, hw(z∗) reveals that disruptive selection can come about when

fitness changes non-linearly with trait expression within and between individuals of the same group (as

in eq. (23) but here weighted by reproductive value); hr(z∗), when trait expression increases both the

likelihood of being in a certain social environment and fitness in that environment; and finally hq(z∗),

when trait expression augments jointly the probability of being in a given individual state and fitness in

that state (both via direct and indirect fitness effects owing to group-structure).
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Table 1: Key general symbols

zm, z Mutant and resident traits, respectively (zm, z ∈ Z ⊆R, where Z is the space of all possible strate-
gies).

ρ(zm, z) Invasion fitness or geometric growth rate of a mutant allele coding for trait zm in a resident pop-
ulation that is monomorphic for z (i.e. per-capita per-time-step number of mutant copies pro-
duced by the mutant lineage, ρ : Z ×Z →R and twice differentiable).

w(zm, z) Individual fitness of a mutant carrier with trait value zm when the rest of the population expresses
z (i.e. expected number of direct descendants produced over one time step by this individual, w :
Z × Z → R and twice differentiable). In a homogeneous and well-mixed population, w(zm, z) =
ρ(zm, z), otherwise not.

s(z) Directional selection gradient (eq. 3)

h(z) Disruptive selection (eq. 3)

z∗ Singular strategy: trait value such that when expressed by the resident population, there is no
directional selection (i.e. such that s(z∗) = 0).
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Table 2: Key symbols for the different models of population structure

Class-structure (section 3.1)

M ∈Z+ Number of classes (e.g. M = 2 for a model with males and females).

wi j (zm, z) Expected number of mutants in class i ∈ {1, . . . , M } produced by a mutant carrier in class j ∈
{1, . . . , M } over one time step.

W (zm, z) Mean matrix: M ×M matrix with (i , j )-entry wi j (zm, z). Invasion fitness ρ(zm, z) is given by the
leading eigenvalue of this matrix.

q(zm, z) Asymptotic frequency distribution of mutants across classes (right eigenvector of W (zm, z), nor-
malised such that entries sum to one,

∑M
j=1 q j (zm, z) = 1). Denoted by q◦ = q(z, z) under neutral-

ity.

v◦ Reproductive values, i.e. v◦
i is the relative asymptotic demographic contribution of an individual

in class i to the future of the population in the absence of selection. Given by the left eigenvector
of W ◦ =W (z, z) and normalised such that v◦ ·q◦ = 1.

Age-structure (in discrete time, section 3.2)

M ∈Z+ Maximum lifespan.

ba(zm, z) Fecundity of a mutant at age a ∈ {1, . . . , M }, i.e. expected number of offspring of age 1 produced
by a mutant of age a.

µa(zm, z) Probability of death of a mutant at age a.

la(zm, z) Probability that a mutant survives at least to age a. Under neutrality, l◦a = la(z, z).

T ◦ Generation time in a population monomorphic for z, i.e. the expected age of a parent.

ṽ◦
a Current reproductive value, i.e. expected number of offspring that an individual produces over

the rest of its lifetime given it has survived to age a in a population monomorphic for z (eq. 13).

Physiological-structure (in continuous-time, section 3.3)

M ∈R+ Maximum lifespan (M =∞ when lifespan is endogenously determined).

x(a), x◦(a) “Internal states”, or “states” for short (e.g. size, skill), of a mutant and of a resident at age 0 ≤ a <
M , respectively.

g (zm, z, x(a)) Rate of change of the state of a mutant in state x(a) (eq. 16).

b(zm, z, x(a)) Birth rate of a mutant in state x(a).

µ(zm, z, x(a)) Death rate of a mutant in state x(a).

l (a), l◦(a) Probabilities that a mutant and a resident survive at least until age a, respectively (eq. 17).

ṽ◦(a) Current reproductive value, i.e. expected number of offspring that an individual produces over
the rest of its lifetime given it has survived to age a in a population monomorphic for z (eq. 18).

Group-structure (section 4)

z• Trait of a focal individual (z• ∈ {zm, z}).

z Average trait expressed by the neighbours of the focal individual (i.e. all members of the group
except the focal individual).

ω(z•, z) Expected number of offspring produced by the focal individual over one time step.

R◦ Neutral relatedness: probability that in a population monomorphic for the resident z, an individ-
ual randomly sampled among the neighbours to a focal individual belong to the same lineage as
the focal (i.e. are identical-by-descent).

R(zm, z) Mutant relatedness: probability that a randomly sampled neighbour to a mutant individual with
trait zm in a resident population with trait z is also mutant (i.e. are identical-by-descent). Under
neutrality, R(z, z) = R◦.

K ◦ Probability that two individuals, randomly sampled with replacement among the neighbours to
a focal individual, are identical-by-descent to the focal (in a population monomorphic for z).
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Figure 1: Trait evolution under stabilising and disruptive selection. A: Evolution under recurrent mutations
when selection is stabilising. First, the population evolves under directional selection (shaded region) gradu-
ally converging to the singular strategy z∗. Once the population expresses z∗, stabilising selection (h(z∗) < 0)
maintains the population monomorphic for z∗. Simulations are shown for the biological scenario given in Ap-
pendix A.1 (parameters used: γ= 0.0005, µ= 0.8, f0 = 2, B1 = 2, B2 =−2, B3 = 0, and with mutations occurring
with probability 0.01 in offspring and whose effects on the trait have mean 0 and standard deviation 0.02). Each
gray dot is the trait expressed by an individual (we randomly sampled 25 individuals every 1000 generations),
thick black line is the population average, and thin black line is the convergence stable and uninvadable strat-
egy z∗. B: Evolution under disruptive selection and the emergence of polymorphism (same model as in A with
B1 = 1.35, B2 = 0.5 and B3 = 1). The population first converges to z∗ under directional selection (shaded region)
and then becomes dimorphic owing to disruptive selection.
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Figure 2: The different paths for disruptive selection. A: In a homogeneous and well-mixed population, the
only relevant effect for disruptive selection is how trait expression by an individual influences its own fitness,
specifically whether fitness increases more than linearly with trait expression (hw(z∗), eq. 8). B: In class- and/or
group-structured populations, disruptive selection can also be due to trait expression simultaneously increas-
ing the probability that a focal individual is in a certain context and individual fitness in that context. Such
context × fitness synergy can be decomposed in two types: (i) asocial, where the context is the state (or class)
of the focal (hq(z∗), eq. 12); and (ii) social, where the context is the genetic environment of the focal (hr(z∗),
eq. 23).
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A Well-mixed and homogeneous populations

A.1 An example

To illustrate how a typical adaptive dynamics analysis proceeds, we go through a simple example in this sec-

tion. We consider a well-mixed and homogeneous population in which individuals go through the following

life-cycle events: (i) Individuals interact with one another accumulating payoff; (ii) Individuals reproduce, with

a fecundity according to payoff and density, leading to frequency- and density-dependence; (iii) Individuals

survive or die with a fixed probability and offspring establish to become adults (so that generations are over-

lapping but we assume there is no effect of age).

The basis of an analysis in a well-mixed and homogeneous population is the individual fitness of a mutant in-

dividual, which recall is the expected number of direct descendants produced between two demographic time

points, i.e. one full iteration of the cycle (i)-(iii) above. For the scenario outlined in the preceding paragraph,

we may write this as,

w(zm, z) = 1−µ︸ ︷︷ ︸
survival

+ π(zm, z)

1+γn̂(z)︸ ︷︷ ︸
fecundity

, (A-1)

where 1−µ is the probability of surviving to the next time point (so that µ is mortality); π(zm, z) is the payoff

obtained by a mutant in a resident population; and n̂(z) is the equilibrium density in the resident population

(so that γ captures the strength of density-dependence). This demographic equilibrium n̂(z) must be such that

individual fitness in a resident population is one (i.e. such that individuals on average replace themselves),

w(z, z) = 1. (A-2)

Substituting eq. (A-1) into eq. (A-2) and re-arrangements lead to the equilibrium density

n̂(z) = 1

γ

(
π(z, z)

µ
−1

)
, (A-3)

which as expected increases as density-dependence γ weakens, payoff π(z, z) increases, and mortality µ de-

creases. Plugging eq. (A-3) into eq. (A-1) we finally obtain

w(zm, z) = 1−µ+µπ(zm, z)

π(z, z)
, (A-4)

for individual fitness, where we recognise survival in 1−µ, and where fecundity can be read as the product

between: the proportion µ of spots left open by the death of adults; and the probability π(zm, z)/π(z, z) that

such a breeding spot is filled by the offspring of a mutant.

For social interactions (event (i) in the life-cycle), let us consider a scenario where individuals randomly pair up
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and play a game such that the evolving trait 0 ≤ z ≤ 1 captures some individual investment into cooperation.

Individual fecundity can be assumed to read as,

π(zm, z) = f0

[
1− zm︸ ︷︷ ︸

cost

+B1(zm + z)+ B2

2

(
z2

m + z2)−B3zmz︸ ︷︷ ︸
benefit

]
, (A-5)

where f0 > 0 is fecundity in the absence of cooperation (when zm = z = 0); 1− zm is the individual cost of

cooperation (so that cooperation has a baseline cost of 1); and the rest is the mutual benefit with B1, B2 and B3

constants respectively capturing the additive, quadratic and multiplicative effects of cooperation (this part of

eq. A-5 can thus be seen as a second order polynomial approximation of a more complex benefit function that

depends on zm and z). The sign of B3 allows us to consider classical games in the social evolution literature,

with for instance B3 > 0 under the snowdrift game (with antagonistic effects among partners) and B3 < 0 under

the stag-hunt game (with complementary effects among partners).

Substituting eq. (A-5) into eq. (A-4) and deriving according to eq. (3), we obtain the selection gradient,

s(z) = B1 −1− z(B3 −B2), (A-6)

which shows immediately that cooperation increases when absent only if the additive benefit exceeds the cost

(i.e. s(0) > 0 only if B1 > 1). Assuming this is true, directional selection favours the evolution of the intermediate

singular strategy

z∗ = B1 −1

B3 −B2
(A-7)

(such that s(z∗) = 0), provided

s′(z∗) = B2 −B3 < 0, (A-8)

so provided the effects of cooperation are more antagonistic than they are accelerating (so that B2 < B3). Finally,

such strategy is uninvadable when

h(z∗) = B2 < 0, (A-9)

in which case the population remains monomorphic for z∗ with equilibrium density,

n̂(z∗) = 1

γ

[
f0

µ

(
1+B1z∗)−1

]
. (A-10)

(found by plugging eq. A-7 into eq. A-5 which is in turn plugged into eq. A-3). This equilibrium density increases

with the level of cooperation z∗ in the population, as expected.

If by contrast eq. (A-9) does not hold (B2 > 0) and eq. (A-8) does, gradual evolution should lead to the emergence

of two differentiated morphs: one that invests more resources into cooperation (“cooperators”) and the other

less (“defectors”). These two are then maintained under negative frequency-dependence selection whereby

defectors are at an advantage when rare as they can exploit cooperators, but at a disadvantage when common
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as they interact with one another and do not reap the benefits of cooperation.

A.2 Selection in terms of payoff

Here we consider the case where fitness depends on some intermediate payoff (e.g. calories, number of mates,

level of light) and show eq. (8) of the main text. We consider the case where individual fitness can be written as

a function,

w(zm, z) = wf(π(zm, z),π(z, z)), (A-11)

where π(zm, z) is the payoff obtained by a mutant individual with trait zm in a resident population with trait z

and π(z, z) is the payoff to a resident (an example of such a fitness function is eq. A-4). We assume that fitness

increases monotonically with payoff, i.e.
∂wf(πm,π)

∂πm
= K > 0. (A-12)

The selection gradient can then be unpacked as

s(z) = ∂wf(π(zm, z),π(z, z))

∂zm
= ∂wf(πm,π)

∂πm

∂π(zm, z)

∂zm
= K

∂π(zm, z)

∂zm
, (A-13)

as required. Similarly, disruptive selection can be expressed as

h(z) = ∂2wf(π(zm, z),π(z, z))

∂zm
2 = ∂wf(πm,π)

∂πm

∂2π(zm, z)

∂zm
2 + ∂2wf(πm,π)

∂πm
2

[
∂π(zm, z)

∂zm

]2

, (A-14)

which at a singular strategy z∗ (so that ∂π(zm, z)/(∂zm) = 0) reduces to

h(z∗) = ∂wf(πm,π)

∂πm

∂2π(zm, z)

∂zm
2 = K

∂2π(zm, z)

∂zm
2 , (A-15)

as required.

A.3 Connection between selection and demography

One other useful aspect of homogeneous and well-mixed populations is that they afford a simple connection

between selection and demography. As we saw in Appendix A.1 (eq. A-2), if n̂(z) is the equilibrium density in a

population monomorphic for z, then such equilibrium is characterised by

w(zm, z, n̂(z)) = 1, (A-16)

where we have explicitly written the dependence of fitness on n̂(z). Let us assume that at the singular strategy

z∗, this equilibrium condition is satisfied at a point attractor n̂(z∗) of demography. Differentiating both sides

of this eq. (A-16) with respect to z and some re-arrangements yield that at a singular strategy z∗, the rate of
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change of population size with the trait value is,

n̂′(z∗) =
[
−∂w(zm, z, n̂)

∂n̂

]−1

× ∂w(zm, z, n̂)

∂z
(A-17)

[1]. The first factor of this equation can be understood as the effect of density-dependence, where

∂w(zm, z, n̂)/(∂n̂) < 0 is the effect of an increase in density on individual fitness; the second factor, meanwhile,

is the effect of frequency-dependence, with ∂w(zm, z, n̂)/(∂z) the effect of a trait change in others on the fit-

ness of a focal individual. Eq. (A-17) reveals that natural selection leads to a demographic maximum (where

n̂′(z∗) = 0) only in the absence of frequency-dependence (i.e. where ∂w(zm, z, n̂)/(∂z) = 0). Otherwise, pop-

ulation size would be greater if prosocial traits (such that ∂w(zm, z, n̂)/(∂z) > 0) were more greatly expressed

than at their singular value, and conversely, if antisocial traits (such that ∂w(zm, z, n̂)/(∂z) < 0) were lesser

expressed, especially so where density-dependence is weak (where ∂w(zm, z, n̂)/(∂z) is close to zero). More

generally, eq. (A-17) highlights how selection leads to an inefficient outcome at the population level as soon as

there is frequency-dependence.

B Selection in class-structured populations

B.1 Matrix population models

We first consider a population that is divided into a finite number M of discrete classes, e.g. males and females,

juvenile and mature individuals, or subordinate and dominant individuals, deriving eqs. (10)-(12) of the main

text. Our derivations largely owe to [2].

B.1.1 Invasion fitness

The joint dynamics of the number of mutants across classes can be modelled by a matrix equation,

nt+1 =W (zm, z) ·nt (B-18)

where entry i ∈ {1, . . . , M } of the vector nt gives the number of mutants in class i at some time t , and the (i , j )-

entry of the M×M matrix, W (zm, z), which we denote by wi j (zm, z), is the expected number of mutants in class

i produced by a mutant in class j (when the mutant is rare and the resident population is at equilibrium). The

matrix W (zm, z) is sometimes referred to as the mean matrix in the theory of multi-type branching process.

From this theory, we know that invasion fitness is given by the leading eigenvalue ρ(zm, z) of matrix W (zm, z).

As such, ρ(zm, z) satisfies,

ρ(zm, z)q(zm, z) =W (zm, z) ·q(zm, z), (B-19)
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where q(zm, z) is the right eigenvector of W (zm, z). We scale this vector such that its entries sum to one, i.e.

such that

q(zm, z) · (1,1, . . . ,1) = 1. (B-20)

In this case the i -entry of q(zm, z) corresponds to the asymptotic probability that a randomly sampled mutant

is in an individual in class i .

Reproductive value. Next, let us define v◦ as the left eigenvector of the mean matrix W ◦ = W (z, z) under

neutrality (whose (i , j )-entry gives the expected number of individuals in class i produced by an individual in

class j in the resident population at equilibrium). Throughout, we denote quantities under neutrality, i.e. when

zm = z, by a superscript ◦. Such quantities should thus be read as functions of the resident trait z (e.g. v◦ is a

function of z) but we do not write such dependency explicitly to avoid notational clutter. Using the property of

eigenvectors and the fact that invasion fitness of a neutral mutant is one (i.e. the eigenvalue associated to v◦ is

1), we have,

v◦ ·W ◦ = v◦. (B-21)

It will turn out to be useful to normalise v◦ such that

v◦ ·q◦ = 1, (B-22)

where q◦ is the right eigenvector of the neutral mean matrix W ◦ (such that W ◦ ·q◦ = q◦). The i -entry of the left

eigenvector v◦ can then thought of as the “reproductive value” of an individual in class i , i.e. its relative (com-

pared to other classes) asymptotic demographic contribution to the future of the population in the absence of

selection, normalised such that the average reproductive value is one (see e.g. [3, p. 97]) .

Weighted fitness effects. The interpretation of q j (zm, z) as the asymptotic probability that a randomly sam-

pled mutant is in an individual in class i , and of v◦
i as the “reproductive value” of an individual in class i can then

help understand selection in class-structured populations. Indeed, left-multiplying both sides of eq. (B-19) by

v◦, we obtain after some re-arrangements,

ρ(zm, z) = v◦ ·W (zm, z) ·q(zm, z)

v◦ ·q(zm, z)
= 1

V (zm, z)

M∑
i=1

M∑
j=1

v◦
i wi j (zm, z)q j (zm, z) (B-23)

where we have defined

V (zm, z) = v◦ ·q(zm, z) =
M∑

i=1
v◦

i qi (zm, z). (B-24)

To capture the effects of selection, we denote by

αi j (zm, z) = wi j (zm, z)−w◦
i j (B-25)
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the difference in the expected number of offspring produced by a mutant and resident (according to class).

Substituting eq. (B-25) into eq. (B-23), we can re-arrange invasion fitness to read as,

ρ(zm, z) = 1

V (zm, z)

M∑
i=1

M∑
j=1

v◦
i

[
w◦

i j +αi j (zm, z)
]

q j (zm, z)

= 1

V (zm, z)

M∑
j=1

M∑
i=1

v◦
i w◦

i j︸ ︷︷ ︸
=v◦

j

q j (zm, z)

︸ ︷︷ ︸
=V (zm,z)

+ 1

V (zm, z)

M∑
i=1

M∑
j=1

v◦
i αi j (zm, z)q j (zm, z)

= 1+ 1

V (zm, z)

M∑
i=1

M∑
j=1

v◦
i αi j (zm, z)q j (zm, z).

(B-26)

This equation shows that ρ(zm, z) > 1 if and only if the second term,
∑M

i=1

∑M
j=1 v◦

i αi j (zm, z)q j (zm, z), is positive.

It is the sum across classes j of the probability that a mutant is in class j (q j (zm, z)) times the number of

mutants in class i produced by such a mutant in excess to a resident (αi j (zm, z)), where these descendants are

weighted by their reproductive value in the resident population (v◦
i ). Note that the choice of the left eigenvector

v◦ as the vector of reproductive values ensures that any neutral mutant (zm = z) has invasion fitness equal to

one. As such, this vector is independent from any mutant effect.

B.1.2 Directional selection

Substituting eq. (B-26) into eq. (3), we obtain that the selection gradient can be expressed as,

s(z) = 1

V ◦︸︷︷︸
=1

M∑
i=1

M∑
j=1

v◦
i
∂

∂zm

[
αi j (zm, z)q j (zm, z)

]+ ∂

∂zm

[
1

V (zm, z)

] M∑
i=1

M∑
j=1

v◦
i α

◦
i j︸︷︷︸

=0

q◦
j

=
M∑

i=1

M∑
j=1

v◦
i

∂αi j (zm, z)

∂zm
q◦

j +
M∑

i=1

M∑
j=1

v◦
i α

◦
i j︸︷︷︸

=0

∂q j (zm, z)

∂zm

=
M∑

i=1

M∑
j=1

v◦
i

∂αi j (zm, z)

∂zm
q◦

j

(B-27)

where here and herafter all derivatives are evaluated at zm = z. Since the derivatives ofαi j (zm, z) and wi j (zm, z)

with respect to zm are equal at all orders (from eq. B-25), i.e. since

∂aαi j (zm, z)

∂za
m

= ∂a wi j (zm, z)

∂za
m

, (B-28)

we finally have

s(z) =
M∑

i=1

M∑
j=1

v◦
i

∂wi j (zm, z)

∂zm
q◦

j (B-29)

for the selection gradient. See eq. (10) in main text for interpretation.
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B.1.3 Disruptive selection

Similarly, plugging eq. (B-26) into the definition of the Hessian eq. (3), we have at a singular strategy that dis-

ruptive selection is given by

h(z∗) = 1

V ◦︸︷︷︸
=1

M∑
i=1

M∑
j=1

v◦
i
∂2

∂zm
2

[
αi j (zm, z)q j (zm, z)

]+ ∂2

∂zm
2

[
1

V (zm, z)

] M∑
i=1

M∑
j=1

v◦
i α

◦
i j︸︷︷︸

=0

q◦
j

+2
∂

∂zm

[
1

V (zm, z)

] M∑
i=1

M∑
j=1

v◦
i
∂

∂zm

[
αi j (zm, z)q j (zm, z)

]
︸ ︷︷ ︸

=0, when zm=z=z∗

=
M∑

i=1

M∑
j=1

v◦
i

∂2αi j (zm, z)

∂zm
2 q◦

j +2v◦
i

∂αi j (zm, z)

∂zm

∂q j (zm, z)

∂zm
+ v◦

i α
◦
i j︸︷︷︸

=0

∂2q j (zm, z)

∂zm
2

 .

(B-30)

Using eq. (B-28), we finally obtain

h(z∗) =
M∑

i=1

M∑
j=1

v◦
i

∂2wi j (zm, z)

∂zm
2 q◦

j +2
M∑

i=1

M∑
j=1

v◦
i

∂wi j (zm, z)

∂zm

∂q j (zm, z)

∂zm
. (B-31)

See eqs. (11)-(12) in main text for interpretation.

B.2 Age-structure

The case of age-structure allows for further analysis and many connections to previous literature, especially on

life history evolution. Here we derive eqs. (14) and (15) of the main text.

B.2.1 Leslie matrix

The nature of age gives the mean matrix a special structure:

W (zm, z) =



b1(zm, z) b2(zm, z) . . . bM−1(zm, z) bM (zm, z)

p1(zm, z) 0 . . . 0 0

0 p2(zm, z) . . . 0 0
...

...
. . .

...
...

0 0 0 pM−1(zm, z) 0


, (B-32)

i.e.,

wi j (zm, z) =


b j (zm, z), i = 1

p j (zm, z), i = j +1

0, otherwise

(B-33)
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where b j (zm, z) is the expected number of offspring that a mutant individual of age j produces (and thus end

up in age class 1) and p j (zm, z) is the probability that a mutant individual of age j survives to age j +1. The

matrix eq. (B-32) is often referred to as a Leslie matrix, very commonly used in demography research. The

special structure of this matrix, with its many zero entries, allows many simplifications as we review below.

B.2.2 Stable age distribution and Fisher’s reproductive value

We can first revisit the vectors q(zm, z) and v◦ that are necessary to characterise selection. Using standard

results [e.g. 4, p. 87], the normalised right eigenvector q(zm, z) of the Leslie matrix eq. (B-32) has entry j given

by,

q j (zm, z) = l j (zm, z)

ρ(zm, z) j−1
×

[
M∑

k=1

lk (zm, z)

ρ(zm, z)k−1

]−1

, (B-34)

where

l j (zm, z) =
j−1∏
k=1

pk (zm, z) (B-35)

is the probability that a mutant individual survives at least until age j . Accordingly, q j (zm, z) gives the asymp-

totic mutant age-distribution (i.e. q j (zm, z) is the asymptotic probability that a randomly sampled mutant is of

age j ). In a population monomorphic for the resident z, this probability reduces to

q◦
j =

l◦j
L◦ (B-36)

(since ρ(z, z) = 1), where

L◦ =
M∑

j=1
l◦j , (B-37)

is the expected lifespan in a population monomorphic for z.

The left eigenvector that is relevant to our analysis, v◦, is found by solving eq. (B-21) (with W ◦ given by eq. B-32)

subject to the constraint eq. (B-22) (with q◦ given by eq. B-36). The literature on life-history evolution, however,

typically uses a different constraint for this eigenvector, leading to a different interpretation of reproductive

value. To distinguish between both interpretations, we denote this other left eigenvector by ṽ◦, so that we have

v◦ =C ṽ◦, (B-38)

where C is a constant (as v◦ and ṽ◦ are both left eigenvectors to the same matrix, they are proportional). Build-

ing on [5], the left eigenvector of W ◦ in age-structured populations is often normalised such that its first entry

is set to one, i.e. ṽ◦
1 = 1, meaning that the reproductive value of an individual in age class 1 is one [4, 6]. Relative

to this, the reproductive value of an individual of age j is then given by,

ṽ◦
j =

M∑
k= j

l◦k b◦
k

l◦j
(B-39)
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(e.g. eq. 4.89 in [4]). Eq. (B-39) leads to the interpretation that the reproductive value of an individual of age

j , ṽ◦
j , is the expected number of offspring that an individual produces given it has survived to age j (under

neutrality). This can be seen as the “current” reproductive value of an individual. The connection between this

eigenvector ṽ◦ and the v◦ that we defined earlier (by eqs. B-21-B-22) can be seen by solving eq. (B-22) for C

with eqs. (B-36), (B-38) and (B-39), i.e. by solving

M∑
j=1

v◦
j q◦

j = 1 ⇐⇒ C
M∑

j=1
ṽ◦

j q◦
j = 1 ⇐⇒ C

M∑
j=1

M∑
k= j

l◦k b◦
k

l◦j

l◦j
L◦ = 1 (B-40)

for C . Eq. (B-40) simplifies to
C

L◦
M∑

j=1

M∑
k= j

l◦k b◦
k︸ ︷︷ ︸

=∑M
j=1 j l◦j b◦

j =T ◦

= 1, (B-41)

where T ◦ is the generation time in a population monomorphic for z, i.e. the expected age of a parent. Re-

arranging eq. (B-41) to solve for C , we obtain

v◦ = L◦

T ◦ ṽ◦ (B-42)

(in line with eqs. 1.54 and 1.56 in [6]). It thus follows that

ṽ◦ ·q◦ = T ◦

L◦ , (B-43)

i.e. “current” reproductive value is normalised such that the average reproductive value is equal to T ◦/L◦, which

can be interpreted as the ratio of generational overlap (e.g. if T ◦/L◦ = 2, then the average age of parents is half

of the expected lifespan of individuals; also recall eq. (B-22) for the normalisation of v◦). Note that this entails

that under v◦, the reproductive value of an individual of age 1 is given by the average lifetime relative to the

average age of reproduction, i.e. by

v◦
1 =

L◦

T ◦ (B-44)

(using the fact that ṽ◦
1 = 1).

B.2.3 Directional selection in age-structured populations

We can then use the above to characterise directional and disruptive selection in age-structured populations.

First, plugging eq. (B-33) into eq. (B-29), we obtain that the selection gradient can be expressed as,

s(z) =
M∑

j=1

[
v◦

1

∂b j (zm, z)

∂zm
+ v◦

j+1

∂p j (zm, z)

∂zm

]
q◦

j . (B-45)
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Factoring by v◦
1 and using eq. (B-36) for q◦

j , this selection gradient can alternatively be expressed as

s(z) = v◦
1

L◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+

v◦
j+1

v◦
1

∂p j (zm, z)

∂zm

]
l◦j

= 1

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+ ṽ◦

j+1

∂p j (zm, z)

∂zm

]
l◦j

(B-46)

where we used eqs. (B-42), (B-39) and (B-44) to go from the first to second line. We can define

µ j (zm, z) = 1−p j (zm, z) (B-47)

as the probability of death at age j for a mutant zm and thus rewrite the selection gradient as

s(z) = 1

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
− ṽ◦

j+1

∂µ j (zm, z)

∂zm

]
l◦j . (B-48)

See eq. (14) in main text for interpretation.

B.2.4 Disruptive selection in age-structured populations

Similarly, substituting eq. (B-33) into eq. (B-31), we find that disruptive selection at a singular strategy z∗ can

be decomposed as the sum of two terms,

h(z∗) = hw(z∗)+2hq(z∗) (B-49)

where

hw(z∗) = 1

T ◦
M∑

j=1

[
∂2b j (zm, z)

∂zm
2 + ṽ◦

j+1

∂2p j (zm, z)

∂zm
2

]
l◦j (B-50)

and

hq(z∗) = L◦

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+ ṽ◦

j+1

∂p j (zm, z)

∂zm

]
∂q j (zm, z)

∂zm
. (B-51)

This latter term can be made more simple by first noting that at a singular strategy, where by definition,

∂ρ(zm, z)

∂zm

∣∣∣∣
zm=z=z∗

= 0, (B-52)

the derivative of the age distribution (from eq. B-34) reduces to,

∂q j (zm, z)

∂zm

∣∣∣∣
zm=z=z∗

= ∂

∂zm

[
l j (zm, z)∑M

k=1 lk (zm, z)

]
zm=z=z∗

= 1

L◦2

(
∂l j (zm, z)

∂zm
L◦+ l◦j

∂L(zm, z)

∂zm

) (B-53)
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where

L(zm, z) =
M∑

k=1
lk (zm, z) (B-54)

is the expected lifespan of a mutant zm in a resident population z. Substituting eq. (B-53) into eq. (B-51) then

yields

hq(z∗) = 1

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+ ṽ◦

j+1

∂p j (zm, z)

∂zm

]
∂l j (zm, z)

∂zm

+ 1

T ◦L◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+ ṽ◦

j+1

∂p j (zm, z)

∂zm

]
l◦j︸ ︷︷ ︸

∝s(z)=0 when z=z∗

×∂L(zm, z)

∂zm
,

(B-55)

leaving us with

hq(z∗) = 1

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
+ ṽ◦

j+1

∂p j (zm, z)

∂zm

]
∂l j (zm, z)

∂zm
. (B-56)

Finally, using eq. (B-47), the two components of disruptive selection can be expressed as

hw(z∗) = 1

T ◦
M∑

j=1

[
∂2b j (zm, z)

∂zm
2 − ṽ◦

j+1

∂2µ j (zm, z)

∂zm
2

]
l◦j

hq(z∗) = 1

T ◦
M∑

j=1

[
∂b j (zm, z)

∂zm
− ṽ◦

j+1

∂µ j (zm, z)

∂zm

]
∂l j (zm, z)

∂zm

(B-57)

See main text eq. (15) for interpretation.

We can connect eqs. (B-48) and (B-57) with marginal effects on the reproductive number,

R0(zm, z) =
M∑

j=1
l j (zm, z)b j (zm, z), (B-58)

which is the expected number of offspring produced by a mutant individual over its whole lifetime. This repro-

ductive number is a classical measure of reproductive success, which is sometimes more convenient to work

with than ρ(zm, z). In fact, using the next generation theorem, it is straightforward to show that ρ(zm, z) > 1

if and only if R0(zm, z) > 1. We can quantify this connection by using the fact that due to the structure of the

Leslie matrix, its leading eigenvalue ρ(zm, z) satisfies the so-called Euler-Lotka equation,

M∑
j=1

l j (zm, z)b j (zm, z)

ρ(zm, z) j
= 1 (B-59)

Deriving both sides of this equation with respect to zm and estimating it at z, we obtain

∂

∂zm

[
M∑

j=1
l j (zm, z)b j (zm, z)

]
︸ ︷︷ ︸

=R0(zm,z)

− ∂ρ(zm, z)

∂zm︸ ︷︷ ︸
=s(z)

M∑
j=1

j l◦j b◦
j︸ ︷︷ ︸

=T ◦

= 0. (B-60)
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Re-arranging the above yields

s(z) = 1

T ◦
∂R0(zm, z)

∂zm
. (B-61)

Similarly, deriving eq. (B-59) twice with respect to zm and estimating at a singular strategy zm = z = z∗, we

obtain

h(z∗) = 1

T ◦
∂2R0(zm, z)

∂zm
2

∣∣∣∣
zm=z=z∗

. (B-62)

Hence directional selection s(z), and disruptive selection h(z∗) (at a singular strategy), are proportional to the

marginal effects of trait expression on R0(zm, z), with the constant of proportionality the inverse of neutral

generation time.

B.2.5 Example

In this section we go through the analysis of an example of trait evolution in an aged-structured population.

The main aim is to illustrate how the second term hq(z∗) of disruptive selection can lead to polymorphism (so

we do not perform an exhaustive analysis of this example). We consider a simple scenario where there are just

two age classes M = 2. The evolving trait 0 ≤ z ≤ 1 is the proportion of resources invested into reproduction at

age 1, such that the expected number of offspring produced by a focal mutant individual with trait zm is

b1(zm, z) = f1zm

1+γ1n̂1(z)
, (B-63)

where f1 > 0 is a parameter that determines the conversion of resources into offspring at age 1; n̂1(z) is the equi-

librium density of individuals of age 1 in the resident population; and γ1 > 0 is a parameter for the strength of

density-dependent competition among individuals of age 1 (we assume there is no density-dependent compe-

tition among individuals of different ages for simplicity, our results are qualitatively similar as long as density-

dependent competition among individuals of different ages is weaker than among of the same age).

Investing resources into reproduction at age 1 however diverts from other vital functions so that survival from

age 1 to 2 is impaired according to

l2(zm, z) = p1(zm, z) = 1− zm; (B-64)

and fecundity at age 2 decreases with zm according to,

b2(zm, z) = f2(1− zm)β

1+γ2n̂2(z)
, (B-65)

where β > 0 modulates the effect of fewer resources available on fecundity; f2 > 0 determines the conversion

of resources into offspring at age 2; γ2 > 0 controls the strength of density-dependent competition among

individuals of age 2; and

n̂2(z) = p◦
1n̂1(z) = (1− z)n̂1(z) (B-66)
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is the equilibrium density of individuals of age 2 in the resident population, which depends on n̂1(z). This

demographic equilibrium is determined from the fact that in a monomorphic at equilibrium, the expected

number of offspring produced during one’s lifetime is one, i.e. from the fact that

R◦
0 =

M∑
j=1

l◦j b◦
j = 1, (B-67)

which for our model here is,
f1z

1+γ1n̂1(z)
+ f2(1− z)1+β

1+γ2(1− z)n̂1(z)
= 1. (B-68)

Eq. (B-68) can be solved analytically for n̂1(z) but we do not present its solution here as it is complicated and

not particularly illuminating.

The above gives all the necessary components to compute the selection gradient (eq. B-48), from which we find

that a singular strategy z∗ must be such that

f1

1+γ1n̂1(z∗)
= f2(1− z∗)β(1+β)

1+ (1− z∗)n̂1(z∗)
, (B-69)

where the left hand side is the marginal benefit from an increase in the investment in fecundity at age 1 and

the right hand side is the marginal cost. We can solve for this singular value numerically and focus on the case

where it is convergence stable, which a numerical inspection suggests occurs where β < 1. From the above,

we can also quantify disruptive selection (eq. B-49 and eq. B-57), which at a singular strategy we find can be

expressed as

h(z∗) = 1

T ◦
f2β(β−1)(1− z∗)β−1

1+γ2(1− z∗)n̂1(z∗)︸ ︷︷ ︸
=hw(z∗)<0 when β<1

+2
1

T ◦
f2β(1− z∗)β−1

1+γ2(1− z∗)n̂1(z∗)︸ ︷︷ ︸
=hq(z∗)>0

= f2β(1+β)(1− z∗)β−1

1+γ2(1− z∗)n̂1(z∗)
> 0. (B-70)

Eq. (B-70) reveals that selection is always disruptive in this model and that this is due to the hq(z∗) term. In

other words, selection is disruptive because an increased investment in fecundity at age 1 has antagonistic

pleiotropic effects on both the probability of surviving till age 2 (∂l2(zm, z)/(∂zm) < 0) and fecundity at age 2

(∂b2(zm, z)/(∂zm) < 0). This allows for two morphs to emerge: (i) one that expresses large z and invests most

of its resources into fecundity at age 1 at the expense of age 2; and (2) one expresses small z and does not

reproduce at age 1 to ensure it can survive to age 2 and reproduce.

B.3 Physiological structure

B.3.1 Euler-Lotka equation, directional selection and disruptive selection

In this section we derive the selection gradient and disruptive selection from Euler-Lotka equation. The deriva-

tions here follows a similar lines of logic than Appendix A of [7], but here we extend their first-order analysis
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of invasion fitness to the second-order. Let z = (zm, z) collect the traits of resident and mutant individuals,

respectively. It follows from standard results of age- and physiologically structured populations that invasion

fitness ρ(zm, z) = ρ(z) satisfies the Euler-Lotka equation

∫ M

0
exp

(
−aρ(z)

)
b(z , x(a))l (a)da = 1, (B-71)

where b(z , x(a)) is the birth rate in state x(a) at age a, l (a) expected survival probability of a mutant individ-

ual to age a, and M is the maximum age of individuals (we assume here that M = ∞, which means lifespan

is assumed to be endogenously given by the evolving trait z). The dynamical equations of x(a) and l (a) are

given by eqs. (16) and (17) of the main text. Note that eq. (B-71) holds for both age- and physiologically struc-

tured populations, whenever there is one-to-one correspondence between age a and state x(a). Integrating

the differential eq. (17) in the main text, we can express survival l (a) to age a as

l (a) = exp

(
−

∫ a

0
µ(z , x(t ))dt

)
. (B-72)

Lets define

φ(ρ(z)) =
∫ M

0
exp

(
−aρ(z)

)
b(z , x(a))l (a)da. (B-73)

and thus we can express the Euler-Lotka equation asφ(ρ(z)) = 1. Recalling that, z = (zm, z) = (z+ϵ, z), we Taylor

expand φ about ϵ= 0, which leads to

φ(ρ(z)) =φ(ρ(z◦))︸ ︷︷ ︸
=1

+dφ(ρ(z))

dϵ

∣∣∣∣
ϵ=0

ϵ+ 1

2

d2φ(ρ(z))

dϵ2

∣∣∣∣
ϵ=0

ϵ2 +O(ϵ3) = 1. (B-74)

It follows thus that up to a second order we have

dφ(ρ(z))

dϵ

∣∣∣∣
ϵ=0

= 0. (B-75)

Unpacking this derivative using the product and chain rules and eq. (B-73) yields

dφ(ρ(z))

dϵ

∣∣∣∣
ϵ=0

= dφ(ρ(z))

dρ(z)

∣∣∣∣
z

dρ(z)

dϵ

∣∣∣∣
ϵ=0

+
∫ M

0
exp

(
−aρ(z◦)

)∂b(z , x(a))

∂zm

∣∣∣∣
z

l◦(a)da

+
∫ M

0
exp

(
−aρ(z◦)

)
b(z◦, x◦(a))

∂l (a)

∂zm

∣∣∣∣
z

da = 0,

(B-76)

where we used that dzm/dϵ= 1 (since zm = z +ϵ). Note that

dφ(ρ(z)

dρ(z)

∣∣∣∣
z
=−

∫ M

0
a b(z◦, x◦(a))l◦(a)da =−T ◦, (B-77)

where T ◦ can be interpreted as the average age of giving birth in the monomorphic population resident for

trait z and the subscript z (or z∗) throughout Appendix (B.3) denotes that all expressions have been evaluated

at the resident (or singular) strategy. Solving eq. (B-76) for s(z) = dρ(z)/dϵ|ϵ=0 and noting that invasion fitness
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of resident individuals at the monomorphic resident population is zero (ρ(z◦) = 0) yields

s(z) = 1

T ◦

[∫ M

0

(
∂b(z , x(a))

∂zm
l◦(a)+b(z◦, x◦(a))

∂l (a)

∂zm

)
da

]
z

(B-78)

By definition, the basic reproductive number is given by the expected lifetime production of offspring and can

here be written as

R0(z) =
∫ M

0
b(z , x(a))l (a)da (B-79)

and thus the total derivative of R0(z) with respect to ϵ is

dR0(z)

dϵ

∣∣∣∣
z
=

∫ M

0

(
∂b(z , x(a))

∂zm
l◦(a)+b(z◦, x◦(a))

∂l (a)

∂zm

)
z

da. (B-80)

Substituting eq. (B-80) into (B-78) yields

s(z) = dρ(z)

dϵ

∣∣∣∣
ϵ=0

= 1

T ◦
dR0(z)

dϵ

∣∣∣∣
ϵ=0

= 1

T ◦
∂R0(z)

∂zm

∣∣∣∣
z

. (B-81)

We now similarly investigate the second-order perturbation d2φ(ρ(z))/dϵ2|ϵ=0 = 0 appearing in the Taylor ex-

pansion (eq. B-74). Similarly, using the chain and product rules on the second-order term yields

d2φ(ρ(z))

dϵ2

∣∣∣∣
ϵ=0

= d2φ(ρ(z))

dρ(z)2

∣∣∣∣
z

(
dρ(z))

dϵ

)2

ϵ=0
+ dφ(ρ(z))

dρ(z)

∣∣∣∣
z

d2ρ(z)

dϵ2

∣∣∣∣
ϵ=0

−2
∫ M

0
ae−aρ(z◦)

(
∂b(z , x(a))

∂zm
l◦(a)+b(z , x(a))

∂l (a)

∂zm

)
z

dρ(z)

dzm

∣∣∣∣
ϵ=0

da

+
∫ M

0
e−aρ(z◦)

(
∂2b(z , x(a))

∂zm
2 l (a)+2

∂b(z , x(a))

∂zm

∂l (a)

∂zm
+b(z , x(a))

∂2l (a)

∂zm
2

)
z

da = 0.

(B-82)

Note that
d2φ(ρ(z))

dρ(z)2

∣∣∣∣
z
=

∫ M

0
a2b(z◦, x◦(a))l◦(a)da = T 2,◦ (B-83)

can be thought of as mean squared age of reproduction and recalling eqs. (B-77), s(z) = dρ(z)/dzm|ϵ=0, and

that ρ(z◦) = 0 yields

d2φ(ρ(z))

dϵ2

∣∣∣∣
ϵ=0

= T 2,◦
(
s(z)

)2 −T ◦ d2ρ(z)

dϵ2

∣∣∣∣
ϵ=0

−2
∫ M

0
a

(
∂b(z , x(a))

∂zm
l (a)+b(z , x(a))

∂l (a)

∂zm

)
z

s(z)da

+
∫ M

0

(
∂2b(z , x(a))

∂zm
2 l (a)+2

∂b(z , x(a))

∂zm

∂l (a)

∂zm
+b(z , x(a))

∂2l (a)

∂zm
2

)
z

da = 0,

(B-84)

Note that s(z) is a constant under integration over age a and we can thus factor it out of the integral on the

second line and the derivative of mean age T ◦ of giving birth with respect to zm can be expressed as

dT ◦

dϵ

∣∣∣∣
ϵ=0

=
∫ M

0
a

(
∂b(z , x(a))

∂zm
l (a)+b(z , x(a))

∂l (a)

∂zm

)
z

da (B-85)
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and second order total derivative of R0(z) with respect to ϵ can be written as

d2R0(z)

dϵ2

∣∣∣∣
z

=
∫ M

0

(
∂2b(z , x(a))

∂zm
2 l (a)+2

∂b(z , x(a))

∂zm

∂l (a)

∂zm
+b(z , x(a))

∂2l (a)

∂zm
2

)
z

da. (B-86)

We can thus write eq. (B-84) as

d2φ(ρ(z))

dϵ2

∣∣∣∣
ϵ=0

= T 2,◦
(
s(z)

)2 −T ◦ d2ρ(z)

dϵ2

∣∣∣∣
ϵ=0

−2
dT ◦

dϵ

∣∣∣∣
ϵ=0

s(z)+ d2R0(z)

dϵ2

∣∣∣∣
ϵ=0

= 0. (B-87)

Solving eq. (B-87) for h(z) = d2ρ(z)/dϵ2|ϵ=0 yields that disruptive selection, given by the second-order deriva-

tive of invasion fitness, takes a form

h(z) = d2ρ(z)

dϵ2

∣∣∣∣
ϵ=0

= 1

T ◦
d2R0(z)

dϵ2

∣∣∣∣
ϵ=0

+T 2,◦
(
s(z)

)2 −2
∂T ◦

∂zm

∣∣∣∣
ϵ=0

s(z). (B-88)

Note that we are only interested in disruptive selection at the singular population state zm = z = z∗, for which

we have s(z∗) = 0. Hence, at the singular population state, we have that

h(z∗) = ∂2ρ(z∗)

∂ϵ2

∣∣∣∣
ϵ=0

= 1

T ◦
d2R0(z∗)

dϵ2

∣∣∣∣
ϵ=0

= 1

T ◦
∂2R0(z)

∂zm
2

∣∣∣∣
z

. (B-89)

Finally, substituting eq. (B-86) into (B-89) yields that

h(z∗) = 1

T ◦

∫ M

0

(
∂2b(z , x(a))

∂zm
2 l (a)+2

∂b(z , x(a))

∂zm

∂l (a)

∂zm
+b(z , x(a))

∂2l (a)

∂zm
2

)
z∗

da. (B-90)

B.3.2 Future reproductive value, current reproductive value and costate variables

In the selection gradient (B-78) and disruptive selection (B-90) we have accompanying state variables x(a) and

l (a) that need to satisfy dynamic constraints given by eqs. (16) and (17). We are now interested in delineating

how the perturbations in state variables affect future expectation of fitness. The proof here follows section B.1

of Appendix of [8]. Let y(a) = (x(a), l (a)) denote a vector collecting the internal state and survival at age a.

Neutral future reproductive value (also known as the residual fitness) of an individual at age a is defined as

v◦
f (a, x◦(a), l◦(a)︸ ︷︷ ︸

y◦(a)

) =
∫ M

a
b(z◦, x◦(t ))l◦(t )dt , (B-91)

i.e. it gives the contribution of fitness of individual from age a onward in a resident population and where

y◦(a) = (x◦(a), l◦(a)) collects the state variables evaluated in the resident population.

In order to establish the link between future reproductive value v◦
f (a, y◦(a)) and how it changes in response to

changes in variables variables, it turns out to be useful to quantifying the change of future reproductive value

v◦
f (a,y(a)) as an individual ages. Let us consider a small but positive age interval ∆a for which we can write
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eq. (B-91)

v◦
f (a, y◦(a)) =

∫ a+∆a

a
b(z◦, x◦(t ))l◦(t )dt +

∫ M

a+∆a
b(z◦, x◦(t ))l◦(t )dt

=
∫ a+∆a

a
b(z◦, x◦(t ))l◦(t )dt + v◦

f (a +∆a, y◦(a)+∆y◦(a)),

(B-92)

where ∆y◦(a) = y◦(a +∆a)− y◦(a) are changes in state variables over ∆a. Taylor expanding v◦
f (a +∆a, y◦(a)+

∆y◦(a)) around ∆a yields

v◦
f (a +∆a, y◦(a)+∆y◦(a)) = v◦

f (a, y◦(a))+ ∂v◦
f (a, y◦(a))

∂a
+λ◦(a, y◦(a)) ·∆y◦(a)+O(∆a2), (B-93)

where

λ◦(a, y◦(a)) =∇v◦
f (a, x◦(a), l◦(a)) =

(
∂v◦

f (a, x(a), l (a))

∂x(a)︸ ︷︷ ︸
λ◦(a,y◦(a))

,
∂v◦

f (a, x(a), l (a))

∂l (a)︸ ︷︷ ︸
ṽ◦(a,x◦(a))

)
z

, (B-94)

is the gradient of v◦
f (a, x◦(a), l◦(a)) with respect to y◦(a). Here and throughout ∇ = (∂/∂x(a),∂/∂l (a))z is the

gradient operator with respect to y◦(a), where the derivatives with respect x(a) and l (a) emphasise that we are

perturbing the state variables of the focal individual, as all partial derivatives are evaluated at resident pop-

ulation state. The vector λ◦(a, y◦(a)) = (λ◦(a, y◦(a)),λ◦
r (a, y◦(a)), ṽ◦(a, x◦(a))) collects the co-state variables

associated with state variables y(a) at age a. Biologically, costate variables give the effect on residual fitness

when perturbing the associated state variable.

We emphasise here that ṽ◦(a, x◦(a)) is the current reproductive value (residual fitness given that the individual

survives to age a) and thus it is not a function of l◦(a). We can show this by using the definition of future

reproductive value (recall eq. B-91) which yields

ṽ◦(a, x◦(a)) = ∂v◦
f (a, x◦(a), l (a))

∂l (a)

∣∣∣∣
z
=

∫ M

a
b(z◦, x◦(t ))

∂l (t )

∂l (a)

∣∣∣∣
z

dt

=
∫ M

a
b(z◦, x◦(t ))

∂l (a)exp(
∫ t

a −µ(z , x(s))ds)

∂l (a)

∣∣∣∣
z

dt

=
∫ M

a
b(z◦, x◦(t ))exp

(∫ t

a
−µ(z◦, x◦(s))ds

)
dt

=
∫ M

a
b(z◦, x◦(t ))

exp(
∫ t

0 −µ(z◦, x◦(s))ds)

exp(
∫ a

0 −µ(z◦, x◦(s))ds)
dt = v◦

f (a, x◦(a), l◦(a))

l◦(a)
.

(B-95)

Note that here the final equality shows that ṽ◦(a, x◦(a)) is indeed the current reproductive value (since its equal

to the future reproductive value divided by survival, which is by definition the current reproductive value) and

the fourth equality shows that ṽ◦(a, x◦(a)) is not a function of l◦(a). Note that it follows from eq. (B-95) that

λ◦(a, y◦(a)) = ∂v◦
f (a,y(a))

∂x(a)

∣∣∣∣
z
= ∂ṽ◦(a, y◦(a))

∂x◦(a)
l◦(a). (B-96)

Approximating the first term on the right-hand-side of eq. (B-92) by b(z◦, x◦(a))l◦(a)∆a and using eq. (B-93),
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we can write eq. (B-92)

v◦
f (a, y◦(a)) = b(z◦, x◦(a))l◦(a)∆a + v◦

f (a, y◦(a))+ ∂v◦
f (a, y◦(a))

∂a
+λ◦(a, y◦(a)) ·∆y◦(a)+O(∆a2). (B-97)

Subtracting v◦
f (a, y◦(a)) from both sides, dividing by ∆a and letting ∆a → 0, and re-arranging leads to

−∂v◦
f (a, y◦(a))

∂a
= b(z◦, x◦(a))l◦(a)+λ◦(a, y◦(a)) ·g(z , y◦(a)) (B-98)

where lim∆a→0(∆y◦(a)/∆a) = g(z ,y(a)) = (g (z◦, x◦(a)),−µ(z◦, x◦(a))l (a)). Eq. (B-98) says that future repro-

ductive value declines with age at the rate of b(z◦, x◦(a))l◦(a) +λ◦(a, y◦(a)) · g(z◦, y◦(a)), where the term

λ◦(a, y◦(a))·g(z◦, y◦(a)) takes into account how state change affects the dynamics of future reproductive value.

This equation has been derived before (see eq. B.7 of Appendix of [8] for further discussion). We here note that

due to external mortality l (M) → 0 as M → ∞ (see eq. B-72 and note that mortality rate can be expressed as

µ(z , x(a)) =µe+µi (z , x(a)), where µe > 0 is the external mortality) and from biological considerations b(z , x(a))

is bounded ∀ a, then by applying on eq. (B-91) the bounded convergence theorem for Riemann integrals (see

Theorem 4 in [9]), we obtain that

v◦
f (M , y◦(M)) = 0 (B-99)

since b(z◦, x◦(a))l◦(a) → 0 as a → M =∞.

We are now ready to derive the dynamic equation for λ◦(a, y◦(a)). For this lets take a gradient with respect to

y◦(a) of eq. (B-98) , which yields

−∇
(
∂v◦

f (a, y◦(a))

∂a

)
=∇

(
b(z◦, x◦(a))l◦(a)

)
+∇

(
λ◦(a, y◦(a)) ·g(z ,y(a))

)
. (B-100)

Using the chain rule, we can write eq. (B-100) as

−∇
(
∂v◦

f (a, y◦(a))

∂a

)
=∇

(
b(z◦, x◦(a))l◦(a)

)
+∇λ◦(a, y◦(a))g(z◦, y◦(a))+λ◦(a, y◦(a)) ·∇g(z◦, y◦(a)), (B-101)

and noting that

∇λ◦(a, y◦(a)) =H
(
v◦

f (a, y◦(a), l◦(a))
)

(B-102)

is a Hessian matrix of v◦
f (a, y◦(a), l◦(a)). Note that the total derivative of v◦

f (a, y◦(a), l◦(a)) with respect to a is

dλ◦(a, y◦(a))

da
= ∂λ◦(a, y◦(a))

∂a
+∇λ◦(a, y◦(a))g(z◦, y◦(a)) (B-103)

and noting that
∂λ◦(a, y◦(a))

∂a
=∇

(
∂v◦

f (a, y◦(a))

∂a

)
(B-104)

as the order of partial derivatives can be changed. Substituting the eq. (B-104) into eq. (B-103), using
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eq. (B-101) and re-arranging yields

−dλ◦(a, y◦(a))

da
=∇

(
b(z◦, x◦(a))l◦(a)

)
+λ◦(a, y◦(a)) ·∇g(z◦, y◦(a)). (B-105)

Given that M →∞, it is then biologically feasible under a broad range of conditions (see also [10] for further

details) that

λ◦(M , y◦(M)) = (0,0,0). (B-106)

Biologically, this is can be interpreted such that, due to external mortality, individuals can not persist forever

and thus the marginal fitness value associated with increasing survival or changing the internal state (e.g. grow-

ing larger) at older ages approaches zero as the individuals are unlikely to find themselves alive at those old

ages.

For future analysis it will turn out to be useful to write down eqs. (B-105) and (B-106) for the two components

λ◦(a, x◦(a), l◦(a)) and ṽ◦(a, x◦(a)), which yields

−dλ◦(a, x◦(a), l◦(a))

da
=

(
∂b(z◦, x◦(a))

∂x(a)
− ṽ◦(a, x◦(a))

∂µ(z◦, x◦(a))

∂x(a)

)
l◦(a)

+λ◦(a, x◦(a), l◦(a))
∂g (z◦, x◦(a))

∂x(a)
with λ◦(M) = 0

(B-107)

and

−dṽ◦(a, x◦(a))

da
=

(
b(z◦, x◦(a))− ṽ◦(a, x◦(a))µ(z◦, x◦(a))

)
with ṽ◦(M) = 0. (B-108)

B.3.3 Directional selection with state constraints

We derive a representation of selection gradient that allows us to unpack the dynamic constraint on survival

and state dynamics using standard technique from optimal control theory. Formally, we use the method from

optimal control theory for a special case of constant controls, because the evolving trait z (or the “control

variable” in the language of optimal control theory) is here are assumed to be a scalar (see e.g. [11, 12] for

optimal control textbooks and e.g. [8, 10] for application in evolutionary biology). This section specifically

follows closely the proof of [10], where the same result has been shown before (in a more general case of group-

structured population).

Let us first add a zero quantity to the basic reproductive number (recall eq. B-79) as follows

R0(z) =
∫ M

0
b(z , x(a))l (a)da +

∫ M

0
λ◦(a) ·

(
g(z ,y(a))− dy(a)

da

)
da︸ ︷︷ ︸

=0

. (B-109)

where we use a short-hand notation for the costate variables λ◦(a) = (λ◦(a), ṽ◦(a)), where we have suppressed

the dependence of state y◦(a) in the arguments (recall thatλ◦(a) =λ◦(a, y◦(a)), see eq. B-94). Here, the costate

variables are multipliers of a zeros (recall that g(z ,y(a)) = dy(a)/da), hence eq. (B-109) would hold for any
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bounded vector of functions λ◦. However, we know from optimal control theory that this choice of adjoining

R0(z) turns out to be useful when later taking the derivative of R0(z) with respect to zm. Using the rule for

integration by parts on the last term of eq. (B-109), where we take M =∞

−
∫ M

0
λ◦(a) · dy(a)

da
da =

∫ M

0
y(a) · dλ◦(a)

da
da −

(
λ◦(M) ·y(M)

)
+λ◦(0) ·y(0)

=
∫ M

0
y(a) · dλ◦(a)

da
da −λ◦(0) ·y(0),

(B-110)

where λ◦(M) = (0,0,0) (recall eq. B-106). Thus we can write eq. (B-110) as

R0(z) =
∫ M

0

(
b(z , x(a))l (a)+λ◦(a) ·g(z ,y(a))+y(a) · dλ◦(a)

da

)
da +λ◦(0) ·y(0) (B-111)

Taking the derivative of this expression for R0(z) with respect to zm

∂R0(z)

∂zm

∣∣∣∣
z
=

∫ M

0

[
∂b(z , x◦(a))

∂zm
l◦(a)+λ◦(a) · ∂g(z , y◦)

∂zm

+
(
∇b(z◦, x◦(a))l◦(a)+λ◦(a) ·∇g(z ,y(a))+ dλ◦(a)

da

)
︸ ︷︷ ︸

(0,0)

·∂y(a)

∂zm

]
z

da.
(B-112)

The multiplier of ∂y(a)/∂zm is a zero vector (recall eq. (B-105)) and recalling that λ◦(a) = (λ◦(a), ṽ◦(a)) and

g(z ,y(a)) = (g (z , x(a)),−µ(z , x(a))l (a)) yields

∂R0(z)

∂zm

∣∣∣∣
z
=

∫ M

0

[(
∂b(z , x◦(a))

∂zm
− ṽ◦(a)

∂µ(z , x◦(a))

∂zm

)
l◦(a)+λ◦(a)

∂g (z , x◦(a))

∂zm

]
z

da. (B-113)

Finally, substituting eq. (B-113) into eq. (B-81), yields that we can express the selection gradient as

s(z) = 1

T ◦

∫ M

0

[(
∂b(z , x◦(a))

∂zm
− ṽ◦(a)

∂µ(z , x◦(a))

∂zm

)
l◦(a)+λ◦(a)

∂g (z , x◦(a))

∂zm

]
z

da. (B-114)

Recall from eq. (B-96) that λ◦(a) = [∂ṽ◦(a)/(∂x(a))]z l◦(a) (and recall that here we have suppressed the argu-

ments of λ◦ and ṽ◦, except for a) and thus we can write the selection gradient as

s(z) = 1

T ◦

∫ M

0

(
∂b(z , x(a))

∂zm
− ṽ◦(a)

∂µ(z , x(a))

∂zm
+ ∂ṽ◦(a)

∂x◦(a)

∂g (z , x(a))

∂zm

)
z

l◦(a)da. (B-115)

We note that this representation of the selection gradient makes it clear that all the components are propor-

tional to survival.

For the forthcoming analysis it turns out to be useful to define the so-called Hamiltonian function as

H
(

z , x(a), l (a),λ◦(a), ṽ◦(a)
)
=

(
b(z , x(a))− ṽ◦(a)µ(z , x(a))

)
l (a)+λ◦(a)g (z , x(a)) (B-116)

which gives the increase in fitness at age a from different “activities” (e.g. reproducing, surviving and changing
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the internal state). From eqs. (B-107)–(B-108) it follows that the dynamics for ṽ◦(a) and λ◦(a) can be written as

−dṽ◦(a)

da
=
∂H

(
z , x(a), l (a),λ◦(a), ṽ◦(a)

)
∂l (a)

∣∣∣∣
z

with ṽ◦(M) = 0,

−dλ◦(a)

da
=
∂H

(
z , x(a), l (a),λ◦(a), ṽ◦(a)

)
∂x(a)

∣∣∣∣
z

with λ◦(M) = 0.

(B-117)

B.3.4 Disruptive selection with state constraints

Here we derive a representation of disruptive selection taking into account the dynamic constraints imposed

by survival l (a) and internal state x(a). Recall that we use short-hand notations y(a) = (x(a), l (a)) and λ◦(a) =
(λ◦(a), ṽ◦(a)), respectively, for state-variables and the associated co-state variables. Thus we can write the

Hamiltonian function introduced in eq. (B-116) as H
(

z ,y(a),λ◦(a)
)

substituting it in eq. (B-111) yields

R0(z) =
∫ M

0

(
H

(
z ,y(a),λ◦(a)

)
+y(a) · dλ◦(a)

da

)
da +λ◦(0) ·y(0). (B-118)

Taking a second-order derivative of R0(z) in this for with respect to zm yields

∂2R0(z)

∂z2
m

=
∫ M

0

[∂2H
(

z ,y(a),λ◦(a)
)

∂zm
2 +

(∂H
(

z ,y(a),λ◦(a)
)

∂y(a)
+ dλ◦(a)

da

)
︸ ︷︷ ︸

=0

·∂
2 y(a)

∂zm
2

+2
∂H

(
z ,y(a),λ◦(a)

)
∂zm∂y(a)

· ∂y(a)

∂zm
+
∂2H

(
z ,y(a),λ◦(a)

)
∂y(a)2

(
∂y(a)

∂zm

)2]
da

=
∫ M

0

[∂2H
(

z ,y(a),λ◦(a)
)

∂zm
2 +2

∂H
(

z ,y(a),λ◦(a)
)

∂zm∂y(a)
· ∂y(a)

∂zm
+
∂2H

(
z ,y(a),λ◦(a)

)
∂y(a)2

(
∂y(a)

∂zm

)2]
da,

(B-119)

where we note that the second order derivatives with respect to a vector y(a) is a matrix

∂2H
(

z ,y(a),λ◦(a)
)

∂y(a)2 =


∂2 H

(
z ,y(a),λ◦(a)

)
x(a)2

∂2 H

(
z ,y(a),λ◦(a)

)
∂x(a)∂l (a)

∂2 H

(
z ,y(a),λ◦(a)

)
∂l (a)∂x(a)

∂2 H

(
z ,y(a),λ◦(a)

)
l (a)2

 . (B-120)
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Expanding the terms containing vectors y = (x(a), l (a)) and λ◦(a) = (λ◦(a), ṽ◦(a)) leads to

∂2R0(z)

∂z2
m

∣∣∣∣
z∗

=
∫ M

0

[∂2H
(

z ,y(a),λ◦(a)
)

∂zm
2 +2

∂H
(

z ,y(a),λ◦(a)
)

∂zm∂l (a)
·ηl (a)

+
∂2H

(
z ,y(a),λ◦(a)

)
∂l (a)2︸ ︷︷ ︸

=0

(
ηl (a)

)2+2
∂H

(
z ,y(a),λ◦(a)

)
∂x(a)∂l (a)

ηx(a)ηl (a)

+2
∂H

(
z ,y(a),λ◦(a)

)
∂zm∂x(a)

ηx(a)+
∂2H

(
z ,y(a),λ◦(a)

)
∂x(a)2

(
ηx(a)

)2
]

z∗
da.

(B-121)

where ηl (a) and ηx(a) are deviations of survival to age a and state at age a, respectively, due to deviation in the

focal mutant individual. The expressions for these deviations can be obtained by integrating eqs. (16) and (17)

and then taking the derivative with respect to zm, which yields

ηl (a) ≡ ∂l (a)

∂zm
=−exp

[
−

∫ a

0
µ(z , x(t ))dt

]∫ a

0

(
∂µ(z , x(a))

∂zm
+ ∂µ(z , x(a))

∂x(t )

∂x(a)

∂zm

)
dt ,

ηx(a) ≡ ∂x(a)

∂zm
= x0 +

∫ a

0

(
∂g (z , x(a))

∂zm
+ ∂g (z , x(a))

∂x(a)

∂x(a)

∂zm

)
dt .

(B-122)

From the definition of the Hamiltonian function (recall eq. B-116), we have that

∂2H
(

z ,y(a),λ◦(a)
)

∂z2
m

=
(
∂2b(z , x(a))

∂zm
2 − ṽ◦(a)

∂2µ(z , x(a))

∂zm
2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂zm
2 , (B-123)

∂H
(

z ,y(a),λ◦(a)
)

∂zm∂l (a)
=

(
∂b(z , x(a))

∂zm
− ṽ◦(a)

∂µ(z , x(a))

∂zm

)
, (B-124)

∂H
(

z ,y(a),λ◦(a)
)

∂x(a)∂l (a)
=

(
∂b(z , x(a))

∂x(a)
− ṽ◦(a)

∂µ(z , x(a))

∂x(a)

)
, (B-125)

∂H
(

z ,y(a),λ◦(a)
)

∂zm∂x(a)
=

(
∂2b(z , x(a))

∂zm∂x(a)
− ṽ◦(a)

∂2µ(z , x(a))

∂zm∂x(a)

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂zm∂x(a)
, (B-126)

and finally

∂2H
(

z ,y(a),λ◦(a)
)

∂x2 =
(
∂2b(z , x(a))

∂x(a)2 − ṽ◦(a)
∂2µ(z , x(a))

∂x(a)2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂x2 . (B-127)
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Substituting eqs. (B-123)–(B-127) into eq. (B-121) yields

∂2R0(z)

∂z2
m

=
∫ M

0

{[(
∂2b(z , x(a))

∂zm
2 − ṽ◦(a)

∂2µ(z , x(a))

∂zm
2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂zm
2

+2

(
∂b(z , x(a))

∂zm
− ṽ◦(a)

∂µ(z , x(a))

∂zm

)
ηl (a)

+2

(
∂b(z , x(a))

∂x(a)
− ṽ◦(a)

∂µ(z , x(a))

∂x(a)

)
ηl (a)ηx(a)

+2

(
∂2b(z , x(a))

∂zm∂x(a)
− ṽ◦(a)

∂2µ(z , x(a))

∂zm∂x(a)

)
l (a)ηx(a)+2λ◦(a)

∂2g (z , x(a))

∂zm∂x(a)
ηx(a)

+
[(
∂2b(z , x(a))

∂x(a)2 − ṽ◦(a)
∂2µ(z , x(a))

∂x(a)2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂x2

](
ηx(a)

)2
}

da.

(B-128)

Substituting eq. (B-128) into eq. (B-89) yields that disruptive selection has the following form

h(z∗) = 1

T ◦

∫ M

0

{[(
∂2b(z , x(a))

∂zm
2 − ṽ◦(a)

∂2µ(z , x(a))

∂zm
2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂zm
2

+2

(
∂b(z , x(a))

∂zm
− ṽ◦(a)

∂µ(z , x(a))

∂zm

)
ηl (a)

+2

(
∂b(z , x(a))

∂x(a)
− ṽ◦(a)

∂µ(z , x(a))

∂x(a)

)
ηl (a)ηx(a)

+2

(
∂2b(z , x(a))

∂zm∂x(a)
− ṽ◦(a)

∂2µ(z , x(a))

∂zm∂x(a)

)
l (a)ηx(a)+2λ◦(a)

∂2g (z , x(a))

∂zm∂x(a)
ηx(a)

+
[(
∂2b(z , x(a))

∂x(a)2 − ṽ◦(a)
∂2µ(z , x(a))

∂x(a)2

)
l (a)+λ◦(a)

∂2g (z , x(a))

∂x(a)2

](
ηx(a)

)2
}

z∗
da.

(B-129)

Recall from eq. (B-95) that λ◦(a) = [∂ṽ◦(a)/(∂x◦(a))]l◦(a) (and recall that we have here suppressed the argu-

ments, expect for a) and note that ηx(a) = ∂x(a)/(∂zm(a))|z and ηl (a) = ∂l (a)/(∂zm(a))|z thus we can write

disruptive selection as h(z∗) = hw(z∗)+2hq, where

hw(z∗) = 1

T ◦

∫ M

0

(
∂2b(z , x(a))

∂zm
2 − ṽ◦(a)

∂2µ(z , x(a))

∂zm
2 + ∂2g (z , x(a))

∂zm
2

∂ṽ◦(a)

∂x◦(a)

)
z∗

l◦(a)da

hq(z∗) = 1

T ◦

∫ M

0

[(
∂b(z , x(a))

∂zm
− ṽ◦(a)

∂µ(z , x(a))

∂zm

)
∂l (a)

∂zm
+hq,x(a)

∂x(a)

∂zm

]
z∗

da,

(B-130)

where

hq,x(a) =
(
∂b(z , x(a))

∂x(a)
− ṽ◦(a)

∂µ(z , x(a))

∂x(a)

)
z∗

∂l (a)

∂zm

∣∣∣∣
z∗

+
(
∂2b(z , x(a))

∂zm∂x(a)
− ṽ◦(a)

∂2µ(z , x(a))

∂zm∂x(a)
+ ∂ṽ◦(a)

∂x◦(a)

∂2g (z , x(a))

∂zm∂x(a)

)
z∗

l◦(a)

+ 1

2

(
∂2b(z , x(a))

∂x(a)2 − ṽ◦(a)
∂2µ(z , x(a))

∂x(a)2 + ∂ṽ◦(a)

∂x◦(a)

∂2g (z , x(a))

∂x2

)
z∗

∂x(a)

∂zm

∣∣∣∣
z∗

l◦(a).

(B-131)

One difficulty in determining the sign of h(z∗) is that it contains deviations ηl (a), ηx(a) and these deviations

may not be easy to compute (recall eq. B-122). In order to bypass this computational difficulty, it turns out to
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be useful to represent h(z∗) in a matrix form, i.e.

h(z∗) = 1

T ◦

∫ M

0
η∗(a)H (a, z∗)

(
η∗(a)

)⊺
da, (B-132)

where η∗(a) = (1,ηl (a),ηx(a))|z∗ is a vector collecting the perturbations in zm, l (a), and x(a) brought fourth by

perturbation in zm and

H (a, z∗) ≡H (z∗, x∗(a), l∗(a),λ∗(a), ṽ∗(a)) =


∂2 H(a)
∂z2

m

∂2 H(a)
∂zm∂l (a)

∂2 H(a)
∂zm∂x(a)

∂2 H(a)
∂l (a)∂zm

0 ∂2 H(a)
∂x(a)∂zm

∂2 H(a)
∂x(a)∂zm

∂2 H(a)
∂x(a)∂zm

∂2 H(a)
∂x(a)2


z∗

(B-133)

is a Hessian of the Hamiltonian H(a) = H(z , x(a), l (a),λ◦(a), ṽ◦(a)) at age a. From the results of optimal control

theory, perturbations in state variables ηl (a) and ηx(a) are small compared to the deviation in zm (see [12,

p. 264–270] and [11, p. 76], and Theorem 5-4 and its corollary 5-1 [12, p. 269–270]). Thus, a sufficient condition

for a strategy z∗ (for which s(z∗) = 0) to be uninvadable (i.e. h(z∗) < 0 to hold) is that

∂2H(a)/∂z2
m|z∗ < 0 and H (a, z∗) is negative semi-definite for all a ∈ [0, M ]. (B-134)

The usefulness of condition (B-134) is that it is a sufficient (point-wise) condition for uninvadability for which

one does not have to compute state deviations ηl (a) and ηx(a) (as one generally has to do in order to compute

h(z∗) directly).

B.3.5 Continuous age-structured population

The results for the physiologically structured population reduce to continuous-time version of age struc-

tured population when the internal states are constant over age, i.e. x(a) = xc is constant, then we have

that g (z , x) = 0. Here, the birth rate and mortality rate are just functions of age, i.e. b(z , xc, a) = b(z , a) and

µ(z , xc, a) =µ(z , a). Substituting these fitness components into the selection gradient for physiologically struc-

tured population (B-114), reduces to

s(z) = 1

T ◦

∫ M

0

(
∂b(z , a)

∂zm

∣∣∣∣
z
− ṽ◦(a)

∂µ(z , a)

∂zm

∣∣∣∣
z

)
l◦(a)da. (B-135)

Eq. (B-135) is just continuous time version of selection gradient for discrete age-structured population (recall

eq. 14).

Similarly, substituting these fitness components into the disruptive selection (B-130) reduce to

hw(z∗) = 1

T ◦

∫ M

0

(
∂2b(z , a)

∂zm
2 − ṽ◦(a)

∂2µ(z , a)

∂zm
2

)
z∗

l◦(a)da,

hq(z∗) = 1

T ◦

∫ M

0

(
∂b(z , a)

∂zm
− ṽ◦(a)

∂µ(z , a)

∂zm

)
z∗
η∗l (a)da,

(B-136)
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which is just a continuous time version of disruptive selection in discrete age-structured population (recall

eq. 15).

B.3.6 Directional selection of phenotypically plastic traits

In this section we derive the selection gradient when trait expression can be age- and state-dependent and dis-

cuss the properties of dynamic constrains associated with the selection gradient under different assumptions

about trait expression. Our aim here is to highlight some crucial steps in the derivations and outline the main

differences in the properties of directional selection under various conceptualisations of traits. For more details

about age-and state-dependent traits and their relationship under more broader context of group-structured

populations (which subsumes well-mixed population as a special case), see [8].

In this context, it is useful to distinguish between (i) trait expressions (or actions); namely, measurement of a

characteristics of an organism throughout the lifespan of individuals (e.g. allocation to growth at different ages)

and (ii) the traits; namely, functional characteristics of organisms that can be thought of as decision rules or

strategies (e.g. allocation to growth as a function of nutrition level). Henceforward, we refer to the first term as

the trait expression and the second terms as the control. We first discuss trait expressions and then specify the

relationship between traits expressions and controls. We denote by zm = {zm(a)}a∈[0,M) and z = {z(a)}a∈[0,M),

the trait expressions over their entire life course (i.e. schedules) for mutant and resident, respectively. The

mutant trait expression can be written as the deviation from the resident at any age a as

zm(a) = z(a)+ϵξ(a), (B-137)

where 0 > ϵ << 1 is a small parameter tuning the effect size of the deviation and ξ(a) is the admissible trait

deviation at age a, such that zm(a) ∈ Z = [zmin, zmax] ∀a ∈ [0, M), where zmin and zmax ∈ R give the minimum

value and maximum values for the trait expression. This means that for an uninvadable strategy (recall eq. 1)

the admissible trait deviations are given for each age a as follows

z∗(a) = zmin ξ(a) ≥ 0

zmin(a) < z∗(a) < zmax(a) ξ(a) unrestricted

z∗(a) = zmax(a) ξ(a) ≤ 0.

(B-138)

If the trait space is unbounded (i.e. Z =R), then the second line gives the admissible trait deviations for all ages

a. We emphasise the properties of bounded controls, because the bounds become especially relevant for age-

and state-dependent traits (e.g. bang-bang strategies of growth and reproduction, where the trait z(a) ∈ [0,1] is

the proportional resource allocation to growth versus reproduction).

There are at least three useful conceptualisations of controls that are relevant to evolutionary biology, which
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can be expressed as

z(a) =


u(t , x◦(t )) closed-loop or feedback control (i.e. state-dependent trait)

u(t ) open-loop control (i.e. age-dependent trait)

uc constant control (i.e. fixed trait)

(B-139)

Thus far, our conceptualisation of trait expression formally corresponds to the case of constant controls. In life-

history theory, traits are often conceptualised either as open-loop controls (i.e. age-dependent traits, e.g. age-

specific allocation strategies to growth vs reproduction) or piece-wise constant controls (e.g. age-at-maturity

models, where bang-bang schedules are assumed). In behavioural ecology we often see closed-loop controls

(i.e. internal state-dependent traits, e.g. survival of winter model in foraging theory). Closed-loop control

is the most general of these conceptualisations that subsumes the other conceptualisations. We now discuss

selection on traits conceptualised as closed-loop controls.

Let us first note that R0(z) under closed-loop formalisation can be expressed as

R0(z) =
∫ ∞

0
b(a, z(a), x(a))l (a)da, (B-140)

where the birth rate b(a, z(a), x(a)) depends on trait expression z(a) = u(a, x(a)) = (u(a, x(a),u(a, x◦(a)) at age

a, where x(a) = (x(a), x◦(a)) and here the birth rate can also depend directly on age a (e.g. allowing for age-

dependent availability of resources). The dynamic constraints imposed by the state variables can be similarly

express as follows

dx(a)

da
= g (a, z(a), x(a)) with x(0) = xb,

dl (a)

da
=−µ(a, z(a), x(a))l (a), with l (0) = 1. (B-141)

Let us now adjoin the basic reproductive number as we did in section B.3.3, which allows us to end up with an

adjoined basic reproductive number (recall eq. B-111 and eq. B-116 for the Hamiltonian) in the following form

R0(z) =
∫ M

0

(
H(a, z(a),y(a),λ◦(a))+y(a) · dλ◦(a)

da

)
da +λ◦(0) ·y(0) (B-142)

where we used the definition of the Hamiltonian function (recall eq. B-116 and that y(a) = (x(a), l (a)) and

λ◦(a) = (λ◦(a), ṽ◦(a))). Note that the Hamiltonian under closed-loop controls takes the form

H(a) ≡ H(a, z(a),y(a),λ◦(a)) = H(a, z(a), x(a), l (a),λ◦(a), ṽ◦(a)) =(
b(a, z(a), x(a))−µ(a, z(a), x(a))ṽ◦(a)

)
l (a)+λ◦(a)g (a, z , x(a)).

(B-143)

Here the selection gradient (recall eq. B-81) takes a form of a so-called Gâteaux derivative (Section 3 in [13]) of
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the basic reproductive number (given by eq. B-142),

s(z) = 1

T ◦
dR0(z)

dϵ

∣∣∣∣
ϵ=0

=
∫ M

0

∂R0(z)

∂zm(a′)
·ξ(a′)da′, (B-144)

where the · here denotes the inner product of two functions (see e.g. [14] Chapter 6). Using eq. (B-142) and

the definition and properties of the Gâteaux derivatives (eqs. A.1 and A.2. in Appendix A.1 in [8]) which can be

expressed in terms of point-wise variations, which yields

s(z) =
∫ M

0

∫ M

0

[
∂H(a, z(a),y(a),λ◦(a))

∂zm(a′)
+ ∂y(a)

∂zm(a′)
· dλ◦(a)

da

]
z
·ξ(a′)da da′

=
∫ M

0

∫ M

0

[
∂H(a, z(a),y(a),λ◦(a))

∂zm(a)

∂zm(a)

∂zm(a′)

+
(
∂H(a, z(a),y(a),λ◦(a))

∂y(a)
+ dλ◦(a)

da

)
︸ ︷︷ ︸

(0,0,0)

· ∂y(a)

∂zm(a′)

]
z
·ξ(a′)da da′

=
∫ M

0

∫ M

0

∂H(a, z(a),y(a),λ◦(a))

∂zm(a)

∂zm(a)

∂zm(a′)

∣∣∣∣
z
·ξ(a′)da da′

=
∫ M

0

∫ M

0

∂H(a, z(a),y(a),λ◦(a))

∂zm(a)
δa(a′)

∣∣∣∣
z
·ξ(a)da da′,

=
∫ M

0

∂H(a, z(a),y(a),λ◦(a))

∂zm(a)

∣∣∣∣
z
·ξ(a)da,

= 1

T ◦

∫ M

0

[(
∂b(a, z(a), x(a))

∂zm(a)
− ṽ◦(a)

∂µ(a, z(a), x(a))

∂zm(a)

)
l (a)+λ◦(a)

∂g (a, z(a), x(a))

∂zm(a)

]
z
·ξ(a)da

(B-145)

For the second equality we used the chain and product rules and eq. (B-105) (together with eq. B-143) which

yield that the state constraints vanish. For the fourth equality, we used the fact that trait deviations at dif-

ferent ages are independent from each other (i.e. ∂zm(a)/(∂zm(a′)) = 0 for all a′ ̸= a) and here δa(a′) de-

notes the Dirac delta function peaked at a with δa(a′) being the value of the function at a′ (δa(a′) = 0 for

all a′ ̸= a). The exterior integral thus vanishes whenever a′ ̸= a (fifth equality). Finally, for the sixth equality

we substituted the Hamiltonian (B-143). Recall from the first line of eq. (B-96) that λ◦(a) = λ◦(a, x◦(a), l◦(a)) =
∂ṽ◦(a, x◦(a), l◦(a))/(∂x◦(a))l◦(a), which upon substitution into eq. (B-145) yields that the selection gradient

under closed-loop and open-loop trait expression takes the following form

s(z) = 1

T ◦

∫ M

0

(
∂b(a, z(a), x(a))

∂zm(a)
− ṽ◦(a)

∂µ(a, z(a), x(a))

∂zm(a)
+ ∂ṽ◦(a)

∂x◦(a)

∂g (a, z(a), x(a))

∂zm(a)

)
z

l◦(a) ·ξ(a)da (B-146)

(see also eqs. 26 and 37 together with eq. 6 of [8]). We now outline the main difference between the selection

gradient (B-146) for closed-loop and open-loop traits and selection gradient (19) and discuss the difference

between closed-loop and open-loop conceptualisations.

First, we note that the directional selection gradient s(z) can be decomposed into age-specific selection gra-

dient s(z, a) = ∂H(a)/(∂z(a)) (i.e. s(z) = ∫ M
0 s(z, a) ·ξ(a)da), which specifies the direction of selection for each

age a. In particular, eq. (B-138) yields that the selection gradient s(z∗, a) for an uninvadable strategy z∗ must
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necessarily satisfy

z∗(a) = zmin only if s(z∗, a) ≤ 0

zmin(a) < z∗(a) < zmax(a) only if s(z∗, a) = 0

z∗(a) = zmax(a) only if s(z∗, a) ≥ 0.

(B-147)

This means that for singular traits (s(z∗, a) = 0) an age-specific balance condition must hold

∂b(a, z(a), x(a))

∂zm(a)

∣∣∣∣
z
= ṽ◦(a)

∂µ(a, z(a), x(a))

∂zm(a)

∣∣∣∣
z
− ∂ṽ◦(a)

∂x◦(a)

∂g (a, z(a), x(a))

∂zm(a)

∣∣∣∣
z

. (B-148)

Intuitively, eq. (B-148) increasing fecundity at age a comes at the cost of increase in mortality weighed by its

effect on future fitness and decreases in the condition of internal state weighed by its effect on future fitness.

Importantly, the trade-offs between fecundity, survival and internal state is independent on survival of the

individual to the current age. This feature comes from the fact that trait expression can change at different

ages, and thus this feature arises under both closed-loop and open-loop control conceptualisations.

Second, the dynamics of the costate variable λ◦(a) = ∂ṽ◦(a, x◦(a), l◦(a))/(∂x(a))|z l◦(a) contains an additional

term that accounts for the feedback of state change on control. This can be seen from eq. (B-107) (recalling

that we have short-hand notations λ◦(a) = λ◦(a, x◦(a), l◦(a)) and ṽ◦(a) = ṽ◦(a, x◦(a))) and noting that here

b(z , x(a)) = b(a, z(a), x(a)), µ(z , x(a)) = µ(a, z(a), x(a)), and g(z , x(a)) = g(a, z(a), x(a)), then it follows that the

dynamics of the costate variable λ◦(s) is given by

−dλ◦(a)

da
=

(
∂b(a,u(a, x(a)), x(a))

∂x(a)
− ṽ◦(a)

∂µ(a,u(a, x(a)), x(a))

∂x(a)

)
z

l◦(a)−λ◦(a)
∂g (a,u(a, x(a)), x(a))

∂x(a)

∣∣∣∣
z

,

=
[(
∂b(a, z(a), x(a))

∂zm(a)
− ṽ◦(a)

∂µ(a, z(a), x(a))

∂zm(a)

)
l◦(a)−λ◦(a)

∂g (a, z(a), x(a))

∂zm(a)

]
z

∂u(a, x(a))

∂x(a)

∣∣∣∣
z

,

+
(
∂b(a, z(a, x(a)), x(a))

∂x(a)
− ṽ◦(a)

∂µ(a, z(a, x(a)), x(a))

∂x(a)

)
z

l◦(a)−λ◦(a)
∂g (a, z(a, x(a)), x(a))

∂x(a)

∣∣∣∣
z

.

(B-149)

where ∂u(a, x(a))/∂x(a) can be interpreted as the trait sensitivity of an individual with respect to changes in its

internal state variable x(a). Using the eq. (B-143) in eq. (B-149) and re-arranging we can represent the costate

dynamics as

−dλ◦(a)

da
= ∂H(a)

∂x(a)

∣∣∣∣
z
+ ∂H(a)

∂zm(a)

∣∣∣∣
z

∂u(a, x(a))

∂x(a)

∣∣∣∣
z︸ ︷︷ ︸

feedback term

.
(B-150)

The appearance of this extra feedback term in the dynamics of the co-state variable λ◦(a) distinguishes closed-

loop conceptualisation from open-loop and constant control conceptualisations of trait expression. Intuitively,

the properties of the feedback term determines the relationship between models with age-dependent trait ex-

pression (e.g. age-dependent resource allocation) and state-dependents models (e.g. size-dependent resource

allocation), and delineates the conditions under which they lead to different predictions about directional se-

lection.

Due to these feedback effects in the dynamics of the costate variable λ◦(a), eq. (B-150) can not be di-
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rectly solved, since it implicitly contains higher order derivatives of neutral future reproductive value v◦
f (a) =

v◦
f (a, x◦(a), l◦(a)) via ∂u(a, x(a))/∂x(a) (see also eq. 33 and discussion in [8]). Under closed-loop conceptuali-

sation of traits, the co-state variable λ◦(a) can be found by first solving a partial differential equation for future

reproductive value (recall eq. B-98), which we can express here as

−∂v◦
f (a, x◦(a), l◦(a))

∂a
= b(a, z◦, x◦(a))l◦(a)+∇v◦

f (a, x◦(a), l◦(a)) ·g(z◦, y◦(a)) (B-151)

and then taking the derivative to find λ◦(a) as λ◦(a) =λ◦(a, x(a), l◦(a)) = ∂v◦
f (a, x(a), l◦(a))/(∂x)|z .

Finally, we would like to note that for an internal singular strategy z∗(a) for which s(z∗, a) = ∂H(a)/zm(a)|z∗ = 0,

the multiplier of ∂u(a, x(a))/∂x(a) is zero. Hence, the feedback effect in co-state dynamics λ◦(a) vanishes and

thus closed-loop and open-loop conceptualisations of controls yield the same evolutionary outcome. Loosely

speaking, the feedback effects are non-zero when there are genetic conflicts between individuals in interaction.

Thus closed-loop conceptualisation is relevant in locally subdivided populations.

C Selection in subdivided populations

C.1 Homogeneous groups

Here we consider the case where individuals within groups are homogeneous and derives eqs. (21)-(23) of the

main text.

C.1.1 Life-cycle events

We follow [15] and consider a haploid population divided into an infinite number of groups each with n adult

individuals with the following life-cycle events: (i) groups may go extinct, in which case all individuals present

in the group die; (ii) each of the n adults in surviving groups produces offspring (in sufficient numbers for each

group to always be of size n at the beginning of stage 1 of the life cycle) and then either survives or dies; finally,

(iii) dispersal and density-dependent competition for vacated breeding spots occur. This life cycle allows for

one, several, or all adults to die per life cycle iteration so allowing for overlapping and non-overlapping gener-

ations as well as metapopulation processes where whole groups go extinct and get re-colonized. We assume

that each offspring has a nonzero probability of dispersal so that groups are not isolated from one another.

Dispersal may occur in groups (propagule dispersal) and before or after density-dependent competition.
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C.1.2 Fitness

In a population subdivided among homogeneous groups of size n, the dynamics of the mutant are modelled

by considering the n ×1 vector Nt = (N1,t , N2,t , . . . , Nn,t ), consisting of the variables Nk,t that give the number

of groups with k mutants at some time t when the mutant is rare. The dynamics of this vector are given by,

Nt+1 = A(zm, z) ·Nt , (C-1)

where the n×n matrix A(zm, z) has (i , j ) entry ai j (zm, z) equal to the expected number of groups with 1 ≤ i ≤ n

mutants produced by a focal group with 1 ≤ j ≤ n mutants (including the focal group if it transits between

number of mutants). Such a notion of reproduction at the group level is possible because we assume that the

mutant is rare, that the number of groups is large, and that dispersal among groups is random. These assump-

tions entail that a mutant group (i.e. a group with at least one mutant) cannot receive mutant immigrants, and

that a resident group (i.e. a group with no mutant) cannot receive mutant immigrants from different mutant

groups. This in turn means that we can clearly ascribe parentage between groups (where the unique parent

group is the one who sends a successful immigrant into a resident group).

Invasion fitness is given by the leading eigenvalueρ(zm, z) of the mean matrix A(zm, z). This eigenvalue satisfies

ρ(zm, z)u(zm, z) = A(zm, z) ·u(zm, z) (C-2)

where u is the right eigenvector of A(zm, z), scaled such that its entries sum to one (i.e.
∑n

i=1 ui (zm, z) = 1), in

which case ui (zm, z) gives the asymptotic frequency of groups with i mutants among mutant groups. The goal

is then to go from a group-level to an individual-level representation of fitness. To do so, we first left multiply

both sides of eq. (C-2) by the vector x = (1,2, . . . ,n) and rearrange to get

ρ(zm, z) = x · A(zm, z) ·u(zm, z)

x ·u(zm, z)
=

∑n
i=1

∑n
j=1 i ai j (zm, z)u j (zm, z)∑n

i=1 i ui (zm, z)
, (C-3)

where the denominator,
∑n

i=1 i ui (zm, z), is the expected number of mutants in a mutant group. Second, we

observe that
∑n

i=1 i ai (zm, z) (which appears in the numerator of eq. C-3) corresponds to the total expected

number of mutant individuals produced by a mutant group (i.e. by all the mutant individuals in that group).

As shown in [16], we can re-write this as

n∑
i=1

i ai (zm, z) = j w j (zm, z), (C-4)

where w j (zm, z) is the expected number of mutants produced by a mutant individual in a group with 1 ≤ j ≤ n

mutants. Plugging eq. (C-4) into eq. (C-3) allows us to write invasion fitness in terms of individual fitness:

ρ(zm, z) =
n∑

k=1
wk (zm, z)qk (zm, z), (C-5)
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where

qk (zm, z) = kuk (zm, z)∑n
i=1 i ui (zm, z)

(C-6)

is the asymptotic probability that a mutant individual is in a group with k ≥ 1 mutants.

To gain further insights, we introduce the function,

w(z•, z1, . . . , zn−1), (C-7)

which is the fitness (i.e. expected number of descendants) of a focal individual whose trait value is z• ∈ {zm, z}

when its n −1 group neighbours have traits z1, . . . , zn−1 (where zi ∈ {zm, z} is the trait of neighbour arbitrarily

indexed i ). Since groups are homogeneous and interactions within groups are random, w(z•, z1, . . . , zn−1) is

insensitive to permutations of its arguments z1, . . . , zn−1. In terms of eq. (C-7), the fitness of a mutant when

there are k mutants in the group (which appears in invasion fitness, eq. C-5) is

wk (zm, z) = w(zm, zm, . . . , zm︸ ︷︷ ︸
k−1

, z, . . . , z︸ ︷︷ ︸
n−k

), (C-8)

since there are k −1 mutants and n −k residents among the neighbours of a focal mutant.

In the main text, we present results under the assumption that individual fitness can be expressed as

w(zm, zm, . . . , zm︸ ︷︷ ︸
k−1

, z, . . . , z︸ ︷︷ ︸
n−k

) = w(zm, z(k), . . . , z(k)), (C-9)

where

z(k) = k −1

n −1
zm + n −k

n −1
z (C-10)

is the average trait among the neighbours to a focal mutant when there are k mutants in the group. Eq. (C-9)

thus posits that the focal individual whose fitness is being considered plays the field within its group: its fitness

can be written as a function of its own trait and the average trait among its neighbours. For short, we denote

this function by,

ω(zm, z(k)) = w(zm, z(k), . . . , z(k)). (C-11)

Plugging eq. (C-9) into eq. (C-5) we get

ρ(zm, z) =
n∑

k=1
ω(zm, z(k))qk (zm, z) (C-12)

for invasion fitness, which we use to compute directional and disruptive selection (in sections C.1.3 and C.1.4).

We explore these in section C.1.5 under the more general assumption that fitness is written as eq. (C-7).
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C.1.3 Directional selection

Taking the derivative of eq. (C-12), we obtain that the gradient of directional selection reduces to,

s(z) =
n∑

k=1

∂ω(zm, z(k))

∂zm
q◦

k +
n∑

k=1
ω◦ ∂qk (z)

∂zm

=
n∑

k=1

∂ω(zm, z(k))

∂zm
q◦

k +
∂

∂zm

[
n∑

k=1
qk (zm, z)

]
︸ ︷︷ ︸

=1︸ ︷︷ ︸
=0

=
n∑

k=1

∂ω(zm, z(k))

∂zm
q◦

k

(C-13)

where we used the fact that individual fitness under neutrality is one, ω◦ = 1, and that
∑n

k=1 qk (zm, z) = 1 as it is

a probability mass function. The derivative of individual fitness ω(zm, z(k)) unfolds as

∂ω(zm, z(k))

∂zm
= ∂ω(z•, z)

∂z•
+ ∂z(k)

∂zm

∂ω(z•, z)

∂z

= ∂ω(z•, z)

∂z•
+ k −1

n −1

∂ω(z•, z)

∂z
,

(C-14)

using eq. (C-10). Substituting eq. (C-14) into eq. (C-13), we obtain

s(z) = ∂ω(z•, z)

∂z•
+R◦ ∂ω(z•, z)

∂z
(C-15)

where we have defined

R◦ =
n∑

k=1

k −1

n −1
q◦

k , (C-16)

as the probability a randomly sampled individual among the neighbours to a focal individual belong to the

same lineage as the focal, which under neutrality corresponds to the probability that two individuals randomly

sampled from the same group are identical-by-descent, i.e. to the standard coefficient of relatedness. See main

text eq. (21) for interpretation of eq. (C-15).

C.1.4 Disruptive selection

Using facts that ω◦ = 1, and that
∑n

k=1 qk (zm, z) = 1, disruptive selection calculated from eq. (C-12) can be

reduced to,

h(z) =
n∑

k=1

∂2ω(zm, z(k))

∂zm
2 q◦

k︸ ︷︷ ︸
=hw(z)

+2
n∑

k=1

∂ω(zm, z(k))

∂zm

∂qk (zm, z)

∂zm︸ ︷︷ ︸
=hr(z)

.
(C-17)
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Using eq. (C-10), the second-order derivative of ω(zm, z(k)) fitness with respect to the mutant expands as,

∂2ω(zm, z(k))

∂zm
2 = ∂2ω(z•, z)

∂z•2 +2
k −1

n −1

∂2ω(z•, z)

∂z•∂z
+ (k −1)2

(n −1)2

∂2ω(z•, z)

∂z2 . (C-18)

so that hw(z) in eq. (C-17) is given by

n∑
k=1

∂2ω(zm, z(k))

∂zm
2 q◦

k = ∂2ω(z•, z)

∂z•2 +2R◦ ∂2ω(z•, z)

∂z•∂z
+K ◦ ∂2ω(z•, z)

∂z2 (C-19)

where we used eq. (C-16) and defined

K ◦ =
n∑

k=1

(k −1)2

(n −1)2 q◦
k , (C-20)

as the probability that under neutrality two randomly sampled individuals (with replacement) among the

neighbours to a focal individual all belong to the same lineage of the focal (i.e. are identical-by-descent). For

the second term of eq. (C-17), we plug eq. (C-14) into it and obtain

hr(z) = ∂ω(z•, z)

∂z•

n∑
k=1

∂qk (zm, z)

∂zm︸ ︷︷ ︸
=0

+∂ω(z•, z)

∂z

n∑
k=1

k −1

n −1

∂qk (zm, z)

∂zm

= ∂ω(z•, z)

∂z

∂R(zm, z)

∂zm

(C-21)

where
∂R(zm, z)

∂zm
= ∂

∂zm

[
n∑

k=1

k −1

n −1
qk (zm, z)

]
(C-22)

is the effect of the mutant on the probability that a randomly sampled neighbour to a mutant individual is also

mutant, i.e. the effect of the trait on relatedness or equivalently on mutant-mutant interactions. See main text

eqs. (22)-(23) for an interpretation of these equations.

C.1.5 Away from playing the field

Here, we highlight the effect of relaxing the assumption that individuals play the field, i.e that fitness can be

written as eq. (C-9) as in [15, 17–20]. To do so, we first Taylor expand the more general function eq. (C-8) for the

individual fitness of a mutant around the average trait among its neighbours (eq. C-10) up to second-order in

ϵ= zm − z (which is sufficient for directional and disruptive selection):

wk (zm, z) =ω(zm, z(k))+
n−1∑
i=1

(zi − z(k))
∂w

∂zi

+ 1

2

n−1∑
i=1

(zi − z(k))2 ∂
2w

∂zi
2 + 1

2

n−1∑
i=1

n−1∑
j=1
j ̸=i

(zi − z(k))(z j − z(k))
∂2w

∂zi∂z j
+O (ϵ3),

(C-23)

where w = w(z•, z1, . . . , zn−1) for short in the derivatives. We can then use the fact that individuals within groups

are homogeneous so that the effect of a trait change in any neighbour i is independent from the index i , so that
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∂w/(∂zi ) = ∂w/(∂z j ) for all i , j = 1, . . . ,n−1 and similarly for higher-order derivatives. This allows us to take the

derivatives out of their sums in eq. (C-23), leading us to,

wk (zm, z) =ω(zm, z(k))+ ∂w

∂zi

n−1∑
i=1

(zi − z(k))︸ ︷︷ ︸
=0

+ 1

2

∂2w

∂zi
2

n−1∑
i=1

(zi − z(k))2 + 1

2

∂2w

∂zi∂z j

n−1∑
i=1

n−1∑
j=1
j ̸=i

(zi − z(k))(z j − z(k))+O (ϵ3)

=ω(zm, z(k))+ 1

2
(n −1)ω2(zm, z(k))σ(k)+ 1

2
(n −1)(n −2)ω3(zm, z(k))c(k)+O (ϵ3),

(C-24)

where we used the definition eq. (C-10) to have
∑n−1

i=1 (zi − z(k)) = 0; the shorthand notation,

ω2(zm, z(k)) = ∂2w

∂zi
2

∣∣∣∣
z1=...=zn−1=z(k)

ω3(zm, z(k)) = ∂2w

∂zi∂z j

∣∣∣∣
z1=...=zn−1=z(k)

(C-25)

for fitness effects; as well as

σ(k) = 1

n −1

n−1∑
i=1

(zi − z(k))2

= k −1

n −1

(
zm − z(k)

)2 + n −k

n −1

(
z − z(k)

)2

(C-26)

for the trait variance among the neighbours of a focal mutant conditional on there being k mutants in the

group; and

c(k) = 1

(n −1)(n −2)

n−1∑
i=1

n−1∑
j=1
j ̸=i

(zi − z(k))(z j − z(k))

= (k −1)(k −2)

(n −1)(n −2)

(
zm − z(k)

)2 +2
(k −1)(n −k)

(n −1)(n −2)

(
zm − z(k)

)(
z − z(k)

)+ (n −k)(n −k −1)

(n −1)(n −2)

(
z − z(k)

)2 ,

(C-27)

for the trait covariance among neighbours (also conditional on there being k mutants in the group). Plugging

eq. (C-25) into eq. (C-5) we get

ρ(zm, z) =
n∑

k=1
ω(zm, z(k))qk (zm, z)

+ 1

2
(n −1)

n∑
k=1

[
ω2(zm, z(k))σ(k)+ (n −2)ω3(zm, z(k))c(k)

]
qk (zm, z)

+O (ϵ3)

(C-28)

for invasion fitness up to second-order in ϵ.

From eq. (C-28), we see that up to first-order in ϵ (which is sufficient to investigate directional selection),

ρ(zm, z) = ∑n
k=1ω(zm, z(k))qk (zm, z). Hence the selection gradient presented in the main text, although for-
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mulated in terms of the simpler fitness function ω(zm, z(k)), applies for more general functions of the form of

eq. (C-7). Another way to see this is that the terms that are of order O (ϵ2) and higher in fitness eq. (C-28) do

not contribute to the selection gradient as their first-order derivative with respect to zm are proportional to

ϵ= zm − z, which vanishes when zm = z.

Using eq. (C-28), disruptive selection can be reduced to,

h(z) =
n∑

k=1

∂2ω(zm, z(k))

∂zm
2 q◦

k +
1

2
(n −1)

n∑
k=1

∂2

∂zm
2

[
ω2(zm, z(k))σ(k)+ (n −2)ω3(zm, z(k))c(k)

]
q◦

k︸ ︷︷ ︸
=hw(z)

+2
n∑

k=1

∂ω(zm, z(k))

∂zm

∂qk (zm, z)

∂zm︸ ︷︷ ︸
=hr(z)

(C-29)

(where the terms that are of order O (ϵ3) and higher in fitness eq. (C-28) can be ignored as their second-

order derivative with respect to zm are proportional to ϵ = zm − z and thus vanish when zm = z). Comparing

eqs. (C-17) and (C-29), we see that hw(z) now consists of an extra term, which we denote by

∆w(z) = 1

2
(n −1)

n∑
k=1

∂2

∂zm
2

[
ω2(zm, z(k))σ(k)+ (n −2)ω3(zm, z(k))c(k)

]
q◦

k . (C-30)

Using the chain rule for the derivatives of ω2(zm, z(k))σ(k) and ω3(zm, z(k))c(k) and using eqs. (C-26)-(C-27),

we obtain that this extra term reduces to

∆w(z) = (n −2)(R◦−R◦
3)(ω2(z, z)−ω3(z, z)) (C-31)

where

R◦
3 =

n∑
k=1

(k −1)(k −2)

(n −1)(n −2)
q◦

k , (C-32)

is the probability that under neutrality three individuals randomly sampled without replacement from the

same group are identical-by-descent.

Unsurprisingly, ∆w(z) vanishes when there are two individuals per group, n = 2. Otherwise, ∆w(z) will typically

be non-zero when individual fitness cannot be written as eq. (C-9) (when individuals do not play the field).

Nevertheless, ∆w(z) may in some cases be small, say of order O (δ), so that eqs. (22)-(23) in the main text still

provide a good approximation for disruptive selection even where individuals do not play the field. This is the

case when for instance: (i) δ=ω2(z, z)−ω3(z, z) is small, which from eq. C-25 we see occurs when interactions

among neighbours have close to additive effects on fitness (i.e. when a second-order trait change in one neigh-

bour has similar fitness effect as joint changes in the traits of two neighbours, ∂2w/(∂zi )2 ∼ ∂2w/(∂zi∂z j )); or

when (ii) δ= R◦−R◦
3 is small, which occurs when dispersal is close to zero (in which case R◦ ∼ 1 and R◦

3 ∼ 1) or

1 (in which case R◦ ∼ 0 and R◦
3 ∼ 0).
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C.1.6 Example 1

Here, we go through an example of social interactions within a group-structured populations. The main goal is

to illustrate how to perform an analysis of disruptive selection under limited dispersal and how such dispersal

limitation inhibits the emergence of polymorphism when cooperation has antagonistic effects among partners

similar to the model of [18] (as in the snowdrift game, see Appendix A.1). We assume the population follows

a Wright-Fisher life cycle (so with non-overlapping generations) with the following events happening at each

generation: (i) individuals interact socially within groups, reaping material payoffs; (ii) individuals reproduce,

making a large number of offspring in proportion to payoff, and then die; (iii) each offspring either disperses

with probability d or remains in its natal group; (iv) finally offspring in each group compete locally for n spots,

becoming the adults of the next generation.

Fitness. According to this life-cycle, the expected number of offspring of a focal individual with trait z• when

its group neighbours have on average trait z is

ω(z•, z) = (1−d)π(z•, z)

(1−d)(π(z•, z)+ (n −1)π(z, z−1))/n +dπ(z, z)︸ ︷︷ ︸
ωp(z•,z)

+ dπ(z•, z)

π(z, z)︸ ︷︷ ︸
ωd(z•,z)

, (C-33)

where π(z•, z) is the fecundity of such a focal individual, and where z−1 = [z•+ (n −2)z]/(n −1) is the average

trait among the neighbours to a neighbour of the focal. Fitness in eq. (C-33) is decomposed as the sum of

two components. The first, ωp(z•, z), is the expected number of offspring that establish locally, consisting of

the ratio of offspring of the focal that remain in their natal group to the total number of offspring that enter

the competition in that group. The second, ωd(z•, z), is the expected number of offspring that establish via

dispersal. Fecundity is as in the example we went through in Appendix A.1 with

π(z•, z) = f0

[
1− z•+B1(z•+ z)+ B2

2

(
z2
• + z2)−B3z•z

]
, (C-34)

so that helping has a baseline unit cost of one, while B1, B2 and B3 determine the benefits of helping, with in

particular B3 controlling the degree of antagonism.

Directional selection. To determine the selection gradient as in eq. (21) requires the coefficient R◦ of pairwise

relatedness under neutrality. Such coefficient is typically computed using standard coalescent argument [e.g.

21, for textbook treatment] that we illustrate here. Suppose we are interested in the probability R◦
t at some

generation t of sampling two haploid individuals that are identical-by-descent in a monomorphic population.

Under the Wright-Fisher model of reproduction, this probability follows a recurrence,

R◦
t = (1−m◦

b)2
(

1

n
+ n −1

n
R◦

t−1

)
, (C-35)
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where m◦
b is the backward probability of dispersal in the resident population, i.e. the probability that a ran-

domly sampled individual is an immigrant, which under our assumptions, is simply the probability of disper-

sal,

m◦
b = d . (C-36)

Accordingly, (1−m◦
b)2 in eq. (C-35) is the probability of sampling two philopatric offspring (which is necessary

for them to be identical-by-descent). Then, with probability 1/n these individuals have the same parent in

which case they are identical-by-descent, otherwise they have different parents who are themselves identical-

by-descent with probability R◦
t−1. Solving eq. (C-35) for the equilibrium R◦ = R◦

t = R◦
t−1 yields,

R◦ = (1−m◦
b)2

1+ (n −1)[1− (1−m◦
b)2]

, (C-37)

which in the limit of large groups and weak dispersal (i.e. as n →∞ and m◦
b → 0 such as the number of immi-

grants nm◦
b = M remains constant) reads as the classical formula

R◦ → 1

1+2M
. (C-38)

Substituting eq. (C-33) (with eq. C-34) and eq. (C-37) into the selection leads to eq. (21)

s(z) = (1−R◦)
B1 −1− z(B3 −B2)

π(z, z)
, (C-39)

from which we obtain the singular value,

z∗ = B1 −1

B3 −B2
. (C-40)

Note that this singular value is independent from dispersal and the same as in a well-mixed population. This

is due to our assumption that generations are non-overlapping in which case indirect fitness benefits are “can-

celled out” by effects of kin competition (an increase in related offspring competing for spots in a group) [22].

The condition for convergence stability,

s′(z∗) = (1−R◦)
B2 −B3

π(z∗, z∗)
< 0, (C-41)

is thus also the same as in a well-mixed population: z∗ is convergence stable if B2 −B3 < 0 (since π(z∗, z∗) > 0).

Most kin selection analyses stop here. However it may often be of interest to determine whether disruptive

selection leads to social polymorphism or not. We do so in the next section.

Disruptive selection. Next we use eqs. (22)-(23) to compute disruptive selection. This requires K ◦, which is

the probability that under neutrality, two individuals randomly sampled with replacement among the neigh-

bours to a random focal individual are identical-by-descent to the focal. This probability may be expressed
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as,

K ◦ = 1

n −1
R◦+ n −2

n −1
R◦

3, (C-42)

where R◦
3 is the probability that three individuals randomly sampled without replacement from the same group

are identical-by-descent, as with 1/(n−1) the two individuals sampled with replacement among the neighbours

to the focal are the same individual (in which case they are identical-by-descent to the focal with probability

R◦) and with complementary probability (n −2)/(n −1) they are different individuals (in which case they are

identical-by-descent to the focal with probability R◦
3). The three-way relatedness coefficient R◦

3 is then com-

puted using a similar argument as the one used for eq. (C-37), yielding

R◦
3 = (1−m◦

b)3
(

1

n2 +3
n −1

n2 R◦+ (n −1)(n −2)

n2 R◦
3

)
(C-43)

at equilibrium (we do not solve eq. C-43 explicitly for R◦
3 but this is straightforward). One further quantity that

is required to investigate disruptive selection is the effect of the trait on pairwise relatedness, ∂R(zm, z)/(∂zm).

For the island model of dispersal under non-overlapping generations, this effect has been shown to be

∂R(zm, z)

∂zm
= 2

R◦

1−mb

[
(1+ (n −1)R◦)

∂ωp(z•, z)

∂z•
+ (2R◦+ (n −2)R◦

3)
∂ωp(z•, z)

∂z

]
(C-44)

([17, 18]; see [15] for overlapping generations). The above gives everything that is necessary to compute disrup-

tive selection from eqs. (22)-(23) of the main text, which in the limit of large groups and weak dispersal tends

to,

h(z∗) → 1

π(z∗, z∗)

M

(2M +1)(M +1)

[
B2(2M +1)−2(B3 −B2)

]
. (C-45)

Necessary conditions for disruptive selection to occur and polymorphism to emerge are thus that B2 > 0 (as in

well-mixed populations) and further that

M > B3

B2
− 3

2
. (C-46)

There is thus a threshold number of immigrants per generation below which selection is no longer disrup-

tive. Put differently, there is a minimum level of dispersal required for polymorphism to emerge in this model

(Fig. 3A; see [17–19, 23] for similar effects). A numerical analysis of the different components of disruptive se-

lection shows that the most negative term, and thus the one contributing most to selection being stabilising,

is the interaction term ∂2ω(z•, z)/(∂z•∂z) < 0. This indicates that interactions among relatives tend to inhibit

disruptive selection and favours the evolution of equal contribution among social partners.

C.1.7 Example 2

The second example for group-structured populations we go through aims to illustrate how preferential inter-

actions among relatives can lead to polymorphism, i.e. via the term hr(z∗). We assume now that the dispersal
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Figure 3: Stabilising and disruptive selection in group-structured populations. A: Disruptive selection
against dispersal in a model of cooperation where cooperation has antagonistic effects among social part-
ners (Appendix C.1.6 for details, with B3 = 3 in black, 10 in dark gray, 20 in light gray; other parameters:
n = 10,B1 = 2,B2 = 1). This indicates that disruptive selection is favoured when antagonism B3 is strong and
disfavoured when dispersal d is weak. B: Singular level of cooperation z∗ in a model where cooperation trades-
off with dispersal as a function of the trade-off parameter β (Appendix C.1.7 for details, other parameters:
n = 10,B1 = 2,B2 = 1). Empty circles indicate singular strategies where selection is disruptive, i.e. h(z∗) > 0,
full circles where selection is stabilising, i.e. h(z∗) < 0. This indicates that strong trade-off (when β is small)
favour the emergence of polymorphism.

probability also depends on the evolving trait and that fitness can be expressed as,

ω(z•, z) = [1−d(z•)]π(z•, z)(
[1−d(z•)]π(z•, z)+ (n −1)

[
1−d(z)

]
π(z, z−1)

)
/n +d(z)π(z, z)︸ ︷︷ ︸

ωp(z•,z)

+ d(z•)π(z•, z)

π(z, z)︸ ︷︷ ︸
ωd(z•,z)

. (C-47)

The backward probability of dispersal now also depends on the resident trait,

m◦
b = d(z). (C-48)

For social interactions, we assume that the evolving trait is a form of participation to a common good whose

benefits are shared equally among all group members. Specifically we assume that fecundity now reads as

π(z•, z) = f0
(
1+B1zγ0 − zα•

)
, (C-49)

where

z0 = 1

n
z•+ n −1

n
z (C-50)

is the average contribution in the group and f0 > 0, B1 > 0, γ > 0 and α > 0 are parameters controlling the fe-

cundity benefits and cost. We assume that increased contribution to the common good also leads to decreased

dispersal, due to e.g. functional trade-offs, according to

d(z•) = 1− zβ• , (C-51)
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where β > 0 controls the shape of trade-off. We can then use the expressions for relatedness (eqs. C-37,

C-42,C-43) and its perturbation (eq. C-44) given above to determine directional and disruptive selection in

this model. We will not perform an exhaustive analysis of this model but a numerical exploration reveals

that disruptive selection readily occurs, especially when the trade-off between cooperation and dispersal is

strong (when β is small, Fig. 3B). This is due to the term hr(z∗) = ∂ω(z•, z)/(∂z)× ∂R(zm, z)/(∂zm) > 0 as an

increase in the trait simultaneously increase neighbour’s fitness (due to increased participation in the com-

mon good, ∂ω(z•, z)/(∂z) > 0) and the probability that neighbours are relatives (due to decreased dispersal,

∂R(zm, z)/(∂zm) > 0; see [24–27] for similar effects but where dispersal and cooperation evolve independently).

C.2 Heterogeneity within groups

We now turn our attention to the case where individuals within groups show heterogenities, for instance when

groups carry males and females, or individuals that have different ages, or that are in different physiological

states, and derive eqs. (III.A)-(IV.D) in Boxes III and IV of the main text. The analysis essentially follows the same

sequence and arguments as in section C.1 but is more involved as it takes into account individual variation in

state. We assume throughout that there is a fixed number M of classes.

C.2.1 Fitness

Here we provide an expression for invasion fitness in terms of reproductive values to capture the class struc-

ture, following [2] (their Appendix F). Our derivation also follows closely [28], perhaps clarifying a few points

and highlighting a couple of assumptions that were left unsaid to derive the selection gradient. As a start-

ing point, we introduce some notation to describe the state of a mutant group, i.e. a group with at least one

mutant in one class. For a given group, we denote by ni the number of individuals in class i in that group,

and by ki ≤ ni be the number of mutants in that class. The state of a mutant group is thus given by a vector

k = ((n1,k1), (n2,k2), . . . , (nM ,kM )) where at least one ki is greater than zero. The space K of all possible config-

urations a mutant group can be in, can thus be described as K = {k : ki ≥ 1 for some i }. Then, we let A(zm, z)

be a |K |× |K | matrix whose element ak ′,k (zm, z) gives the expected number of groups in state k ′ produced by

a group in state k . As in the above section, invasion fitness is given by the leading eigenvalue of this matrix,

which satisfies

ρ(zm, z)u(zm, z) = A(zm, z) ·u(zm, z) (C-52)

where u is the right eigenvector of A(zm, z) (so of length |K |), scaled such that its entries sum to one. The entry

uk (zm, z) of this eigenvector is thus the asymptotic frequency of groups in state k among mutant groups.

The goal is to connect eq. (C-52) with an individual level measure of fitness. This is done in several steps. First,

we define,

qk , j (zm, z) = k j uk (zm, z)

x ·u(zm, z)
(C-53)
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where x is a vector of length |K | whose entry k gives the number of mutants in a group in such a state k , i.e.

xk =
M∑

i=1
ki . (C-54)

Accordingly, x ·u(zm, z) is the expected number of mutants in a mutant group, and qk , j (zm, z) is the probability

that a randomly sampled mutant is in a group in state k and in an individual in class j . As required, one has

∑
k∈K

M∑
j=1

qk , j (zm, z) = 1. (C-55)

We can marginalise the probability mass qk , j (zm, z) to obtain the probability that a randomly sampled mutant

is in an individual in class j : ∑
k∈K

qk , j (zm, z) = q j (zm, z), (C-56)

which we can use to obtain

qk , j (zm, z) = qk | j (zm, z)q j (zm, z), (C-57)

where qk | j (zm, z) is the conditional probability that given that a mutant is in an individual in class j , its group

is in state k .

Second, we define wi j |k (zm, z) as the expected number of mutant individuals in class i produced by a focal

mutant individual in class j , given that its group is in state k . Under neutrality (when zm = z), this individual

fitness measure is independent of k and thus reduces to w◦
i j . This allows us to define the reproductive value v◦

j

of an individual in class j , which is such that

v◦
j =

M∑
i=1

v◦
i w◦

i j , (C-58)

and that we scale in order for,
M∑

i=1
v◦

i q◦
i = 1, (C-59)

i.e. for the expected reproductive value of an individual that is randomly sampled from a neutral mutant lineage

is one. We can then define the vector v◦ of length |K | whose k ∈K entry is

v◦
k =

M∑
i=1

ki v◦
i . (C-60)

Next, we left multiply eq. (C-52) by the vector v◦, and after re-arrangement obtain,

ρ(zm, z) = v◦ · A(zm, z) ·u(zm, z)

v◦ ·u(zm, z)
= 1

v◦ ·u(zm, z)

∑
k∈K

∑
k ′∈K

v◦
k ′ak ′,k (zm, z)uk (zm, z) (C-61)
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Using eq. (C-60) to substitute for v◦
k ′ gives us

ρ(zm, z) = 1

v◦ ·u(zm, z)

∑
k∈K

M∑
i=1

v◦
i

[ ∑
k ′∈K

k ′
i ak ′,k (zm, z)

]
uk (zm, z), (C-62)

where the term within square brackets corresponds to the expected number of mutant individuals in class i

produced by all the mutant individuals in a mutant group in state k . This can therefore be equivalently written

as, ∑
k ′∈K

k ′
i ak ′,k (zm, z) =

M∑
j=1

k j wi j |k (zm, z). (C-63)

Plugging eq. (C-63) into eq. (C-62) then yields,

ρ(zm, z) = 1

v◦ ·u(zm, z)

∑
k∈K

M∑
i=1

M∑
j=1

v◦
i k j wi j |k (zm, z)uk (zm, z) (C-64)

Finally, we can multiply and divide the above by x ·u(zm, z) and use eqs. (C-53) and (C-57) to write invasion

fitness in terms of individual fitness as

ρ(zm, z) = 1

VT(zm, z)

∑
k∈K

M∑
i=1

M∑
j=1

v◦
i wi j |k (zm, z)qk | j (zm, z)q j (zm, z), (C-65)

where

VT(zm, z) = v◦ ·u(zm, z)

x ·u(zm, z)
= ∑

k∈K

M∑
i=1

v◦
i qk ,i (zm, z), (C-66)

is the expected reproductive value in a monomorphic resident population of an individual that is randomly

sampled from the asymptotic mutant lineage distribution. Under neutrality, this reduces to

V ◦
T =

M∑
i=1

v◦
i q◦

i = 1, (C-67)

thanks to normalisation eq. (C-59).

To proceed further into the analysis of selection and connect with previous results, we write the expected num-

ber of mutant individuals in class i produced by a mutant individual in class j in a group in state k as an explicit

function of all the traits expressed in the focal group, i.e. as a function

wi j |k (zm, z) = wi j ( zm︸︷︷︸
focal

, zm, . . . , zm︸ ︷︷ ︸
k1

, z, . . . , z︸ ︷︷ ︸
n1−k1

, . . . , zm, . . . , zm︸ ︷︷ ︸
k j −1

, z, . . . , z︸ ︷︷ ︸
n j −k j

, . . . , zm, . . . , zm︸ ︷︷ ︸
kM

, z, . . . , z︸ ︷︷ ︸
nM−kM

), (C-68)

whose first argument is the trait expressed by the focal mutant individual (in class j ), and the other arguments

are the traits of its group neighbours: for each class i ′ ̸= j other than of the focal, we have ni ′ arguments for the

traits of individuals in that class (composed of ki ′ mutants and ni ′ −ki ′ residents); and for class j of the focal,

we have n j −1 arguments as the focal is excluded (so with k j −1 mutant trait values and n j −k j residents). For

simplicity, we assume that individuals “play the field”, such that we can consider that each neighbour expresses
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the mean trait value of its class, i.e. such that

wi j |k (zm, z) = wi j (zm, z1 j (k), . . . , z1 j (k)︸ ︷︷ ︸
n1

, . . . , z j j (k), . . . , z j j (k)︸ ︷︷ ︸
n j −1

, . . . , zM j (k), . . . , zM j (k)︸ ︷︷ ︸
nM

), (C-69)

where

zi j (k) =


ki

ni
zm + ni −ki

ni
z, i ̸= j

ki −1

ni −1
zm + ni −ki

ni −1
z, i = j ,

(C-70)

is the average trait among the neighbours of class i to a focal individual in class j in a group in state k . For

short, we denote this fitness function in terms of averages as,

wi j |k (zm, z) =ωi j (zm, z j (k)) (C-71)

where the vector z j (k) = (z1 j (k), . . . , zM j (k)) collects the average trait expressed by the neighbours to a focal

individual in class j in a group in state k .

Substituting eq. (C-71) into eq. (C-65), we obtain

ρ(zm, z) = 1

VT(zm, z)

M∑
i=1

M∑
j=1

∑
k∈K

v◦
i ωi j (zm, z j (k))qk | j (zm, z)q j (zm, z). (C-72)

Finally, it will be useful to use

αi j (zm, z j (k)) =ωi j (zm, z j (k))−w◦
i j (C-73)

for the effect of selection on individual fitness component, which is therefore such that

α◦
i j = w◦

i j −w◦
i j = 0. (C-74)

Plugging eq. (C-73) into eq. (C-72) gives us

ρ(zm, z) = 1

VT(zm, z)

M∑
i=1

M∑
j=1

∑
k∈K

v◦
i

[
w◦

i j +αi j (zm, z j (k))
]

qk | j (zm, z)q j (zm, z), (C-75)

which after using eqs. (C-58) and eqs. (C-66) reduces to

ρ(zm, z) = 1+ 1

VT(zm, z)

M∑
i=1

M∑
j=1

∑
k∈K

v◦
i αi j (zm, z j (k))qk | j (zm, z)q j (zm, z). (C-76)

This final expression for invasion fitness is then the basis for our analysis of selection that comes next.
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C.2.2 Directional selection

Taking the derivative of invasion fitness (eq. C-76) with respect to the mutant zm and estimating it at the resi-

dent z yields,

s(z) = 1

V ◦
T

∂

∂zm

[
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i αi j (zm, z j (k))qk | j (zm, z)q j (zm, z)

]

+ ∂

∂zm

[
1

VT(zm, z)

] M∑
i=1

M∑
j=1

∑
k∈K

v◦
i α

◦
i j q◦

k | j q◦
j ,

(C-77)

simply using the chain rule. Using eq. (C-74), the second term vanishes, while the first term reduces to,

s(z) =
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i

∂αi j (zm, z j (k))

∂zm
q◦

k | j q◦
j (C-78)

(also from eq. C-74 and eq. C-67). We can then use the fact that the derivatives of αi j (zm, z j (k)) and

ωi j (zm, z j (k)) are equal at all orders (from eq. C-73), i.e. that

∂aαi j (zm, z j (k))

∂za
m

= ∂aωi j (zm, z j (k))

∂za
m

(C-79)

to write the selection gradient as

s(z) =
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i

∂ωi j (zm, z j (k))

∂zm
q◦

k | j q◦
j , (C-80)

which is more biologically meaningful. Next, we can use eq. (C-70) to expand the derivative of the individual

fitness components as,

∂ωi j (zm, z j (k))

∂zm
= ∂ωi j (z•, z)

∂z•
+ ∂ωi j (z•, z)

∂z j

k j −1

n j −1
+

M∑
i ′=1
i ̸= j

∂ωi j (z•, z)

∂zi ′

ki ′

ni ′
, (C-81)

where the first term is the effect of a trait change in the focal individual on its own fitness, the second term of a

change in the neighbours to the focal that belong to the same class j , and the rest the effect of a change in the

neighbours of a different class. Substituting eq. (C-81) into eq. (C-80) then allows us to express the selection

gradient as,

s(z) =
M∑

i=1

M∑
j=1

v◦
i

[
∂ωi j (z•, z)

∂z•
+

M∑
i ′=1

∂ωi j (z•, z)

∂zi ′
R◦

i ′| j

]
q◦

j , (C-82)

where

R◦
i ′| j =


∑

k∈K
ki ′

ni ′
qk | j (z), i ′ ̸= j

∑
k∈K

ki ′ −1

ni ′ −1
qk | j (z), i ′ = j

(C-83)
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is a class-specific coefficient of relatedness: the probability that under neutrality, an individual randomly sam-

pled from class i ′ among the neighbours to a focal in class j , is identical-by-descent to the focal. See main text

eq. (III.A) for interpretation of eq. C-82.

C.2.3 Disruptive selection

We proceed similarly to obtain disruptive selection, which using eq. (C-74) reads as

h(z∗) = 1

V ◦
T

∂2

∂zm
2

[
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i αi j (zm, z j (k))qk | j (zm, z)q j (zm, z)

]

+2
∂

∂zm

[
1

VT(zm, z)

]
∂

∂zm

[
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i αi j (zm, z j (k))qk | j (zm, z)q j (zm, z)

]
︸ ︷︷ ︸

=0, when z=z∗

,
(C-84)

where the second term vanishes at a singular point (i.e. where s(z∗) = 0). Expanding the first term with the

chain rule and using eqs. (C-74) again, as well as (C-67) and (C-79), we find that disruptive selection can be

expressed as the sum of three terms,

h(z∗) = hw(z∗)+2hr(z∗)+2hq(z∗), (C-85)

that are given by

hw(z∗) =
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i

∂2ωi j (zm, z j (k))

∂zm
2 q◦

k | j q◦
j (C-86)

hr(z∗) =
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i

∂ωi j (zm, z j (k))

∂zm

∂qk | j (zm, z)
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q◦

j (C-87)

hq(z∗) =
M∑

i=1

M∑
j=1

∑
k∈K

v◦
i

∂ωi j (zm, z j (k))

∂zm
q◦

k | j
∂q j (zm, z)

∂zm
, (C-88)

which we explore further below.

The first term depends on the second order derivative of ωi j (zm, z), which using eq. (C-70), can be expanded

into,

∂2ωi j (zm, z)

∂zm
2 = ∂2ωi j (z•, z)

∂z•2 +2
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(C-89)
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Plugged into eq. (C-86), we can then write the first term of disruptive selection as,

hw(z∗) =
M∑

i=1

M∑
j=1

v◦
i

[
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]
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j , (C-90)

where we used eq. (C-83) and defined

K ◦
i ′,i ′′| j =
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, (C-91)

which is the probability that under neutrality two individuals randomly sampled with replacement, one from

class i ′ and the other from class i ′′, among the neighbours to a focal individual in class j all belong to the

same lineage of the focal (i.e. are identical-by-descent). For the second second term participating to disruptive

selection, we substitute eq. (C-81) into eq. (C-87) to obtain,

hr(z∗) =
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i=1
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where we used the fact that
∑

k∈K qk | j (zm, z) = 1 so that the first line vanishes, and defined
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(C-93)

for the effect of the mutant on the probability that a randomly sampled neighbour in class i ′ to a mutant indi-

vidual in class j is also mutant. Finally, substituting eq. (C-81) into eq. (C-88) and using eq. (C-83), we get that

the last term participating to disruptive selection is,

hq(z∗) =
M∑

i=1

M∑
j=1

v◦
i

[
∂ωi j (z•, z)
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]
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. (C-94)

See main text eqs. (IV.A)-(IV.D) for interpretation of these terms.
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