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Abstract

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mu-

tation rate and investing into life-history functions. Life-history and the mutation rate therefore

coevolve, but this joint evolutionary process is not well understood. Here, we develop a mathe-

matical model to analyse the long-term evolution of individual resource allocation traits affecting

life-history and the deleterious mutation rate. We show that the invasion fitness of alleles controlling

allocation to life-history functions and mutation rate reduction can be approximated by the basic

reproductive number of the least-loaded class, which is the expected lifetime production of offspring

without deleterious mutations born to individuals with no deleterious mutations. Second, we analyse

two specific biological scenarios: (i) coevolution between reproductive effort and germline mainte-

nance and (ii) coevolution between age at maturity and germline maintenance. This provides two

broad biological predictions. First, resource allocation to germline maintenance, at the expense of

allocation to survival and reproduction, tends to increase as external causes of mutation rate increase

(e.g. environmental stress, oxygen levels) and to tilt allocation towards reproduction instead of sur-

vival. Second, when such external causes increase, life-histories tend to be faster with individuals

having shorter life spans and smaller body sizes at maturity.

Keywords: life-history evolution, mutation accumulation, adaptive dynamics, cost of fidelity, mutation

rate evolution
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1 Introduction

Maintaining and accurately transmitting genetically encoded information is central for every living or-

ganism. Mutations induce errors in the processing of genetic information and their effects on fitness are

generally (mildly) deleterious (Eyre-Walker and Keightley, 2007). Therefore, it is likely that selection

primarily favours a reduction of the mutation rate of organisms (Sniegowski et al., 2000). Yet, investing

resources into germline maintenance is physiologically costly (Kirkwood, 1986; Maklakov and Immler,

2016; Monaghan and Metcalfe, 2019; Chen et al., 2020). Therefore, the balance between selection against

deleterious mutations driving for lower mutation rates and selection for reduced physiological cost in-

creasing mutation rates are expected to lead to a positive evolutionary equilibrium rate of mutation.

This argument has been formalised in a number of classical population genetic models assuming semel-

parous reproduction (e.g. Kimura, 1967; Kondrashov, 1995; Dawson, 1998, 1999; Johnson, 1999; André

and Godelle, 2006; Gervais and Roze, 2017) as well as age-structured populations (Lesaffre, 2021) to

show that evolution indeed favours a positive evolutionary stable mutation rate. These studies emphasise

the role of physiological cost of germline fidelity in explaining the patterns of mutation rates, but do

not connect the cost of germline fidelity explicitly to life-history evolution, which depends on underlying

physiological trade-offs.

Indeed, a central premise made in life-history theory is that life-history trade-offs are mediated through

allocation of resources to different life-history functions, such as growth, reproduction, and maintenance

of soma, or information gathering and processing (Stearns, 1992; Roff, 2008). Since germline maintenance

takes a toll on available resources, mutation rate evolution and life-history evolution are tied together

through a resource allocation trade-off. This implies that the rate of deleterious mutations should co-

evolve with life-history and affects various life-history traits, such as reproductive effort, age-at-maturity,

adult body size, and expected lifespan. Yet the bulk of models about the evolution of mutation rates,

which often go under the heading of modifier models, consider physiologically neutral mutation rate

(e.g. Leigh, 1970; Gillespie, 1981; Holsinger and Feldman, 1983; Liberman and Feldman, 1986; Gerrish

et al., 2007; Altenberg et al., 2017; Baumdicker et al., 2020). And while the effect of fixed mutation rate

on life-history trade-offs have been studied before (e.g. Charlesworth, 1990; Dańko et al., 2012), these

models suggest that a relatively high level of mutation rates is needed for mutation accumulation to alter

life-history trade-offs. This led to the conclusion that mutation accumulation is a minor force in shaping

life-history traits (Dańko et al., 2012). But these studies view mutation rates as fixed traits acting only

as a hindrance for adaptive life-history evolution. Hence, no study has yet investigated the joint adaptive

coevolution of both deleterious mutation rates and general life-histories in age-structured populations.

The aim of this paper is to start to fill this gap by formally extending evolutionary invasion analysis–

“ESS” theory–(e.g., Maynard Smith, 1982; Eshel and Feldman, 1984; Metz et al., 1992; Charlesworth,

1994), which has been sometimes implicitly yet routinely applied to life-history evolution (e.g., León,

1976; Michod, 1979; Schaffer, 1982; Iwasa and Roughgarden, 1984; Stearns, 1992; Perrin, 1992; Perrin
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and Sibly, 1993; Cichon and Kozlowski, 2000; Iwasa, 2000; Day and Taylor, 2000), to the case where

life-history trait(s) evolving by selection also control the rate of deleterious mutations. This covers

the situation where life-history resource allocation schedules evolve on a background where deleterious

mutation accumulation can occur. Our formalisation thus aims at integrating both the standard theories

of life-history evolution and deleterious mutation accumulation for direct selection on the mutation rate.

The rest of this paper is organised into two parts. First, we characterise the invasion process of a

mutant life-history trait affecting the load of deleterious mutations accumulation in an age-structured pop-

ulation. We show that ascertaining the joint evolutionary stability of life-history schedules and mutation

rates of deleterious mutations is usually complicated, but under certain biologically feasible conditions; in

particular, when the zero mutation class (least-loaded class) dominates the population in frequency, evo-

lutionary stability can be ascertained from the basic reproductive number of the least-loaded class alone

(expected lifetime production of offspring with no mutations born to individuals with no mutations).

Second, we analyse and solve two concrete biological scenarios: (i) coevolution between reproductive

effort and germline maintenance, where individuals face a trade-off between allocating resources to sur-

vival, reproduction and germline maintenance and (ii) coevolution between age-at-maturity and germline

maintenance, where individuals face a trade-off between allocating resources to growth, reproduction and

germline maintenance. These scenarios allow us to illustrate how our model can be applied to anal-

yse questions in life-history and mutation rate evolution and provide predictions about how life-history

and the mutation rate coevolves. It also allows us to verify that the analysis based on using the basic

reproductive number of the least-loaded class as an invasion fitness proxy matches with results from

individual-based stochastic simulations.

2 Model

2.1 Main biological assumptions

We consider a panmictic population of haploid individuals reproducing asexually. The population size

is assumed to be large and regulated by density-dependent competition. Individuals in the population

are structured into age classes and each individual undergoes birth, possibly development, reproduction,

and death. An individual of age a, which is either a discrete or continuous number, is characterised to

be of type θ(a) = (u(a), nm(a)), which consists of two genetically determined components (see Table 1

for a list of symbols and more formalities). The first component, u(a), is the individual’s life-history

trait expressed at age a; namely, a resource allocation decision at age a to different life-history functions

(e.g. growth, reproduction, or somatic maintenance, see e.g. Stearns, 1992; Perrin, 1992; Perrin and

Sibly, 1993; Day and Taylor, 2000). We denote by u = {u(a)}a∈T the whole life-history schedule or

a path over all possible age classes T an individual can be in (formally, u ∈ U[T], where U[T] is the

set of all admissible life-history schedules). The second component, nm(a), represents the number of

deleterious germline mutations an individual at age a carries. Hence, nm(a) can be thought of as the load
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of deleterious mutations as considered in classical population genetic models of mutation accumulation

(e.g., Kimura and Maruyama, 1966; Haigh, 1978; Dawson, 1999; Bürger, 2000), but here extended to an

age-structured model (see also Steinsaltz et al., 2005 for aged-structured mutation accumulation model).

As such, nm = {nm(a)}a∈T represents the profile of deleterious mutations across lifespan.

We envision that the genotype determining the type θ = (u, nm) of an individual consists of two

separate positions (or loci) that are necessarily linked under asexual reproduction, one locus determining

u and the other nm (see Fig. 1). The mutation rate at the life-history trait u locus is assumed to be

fixed and is thus exogenously given. However, this trait is assumed to control allocation to germline

maintenance and other life-history functions, and thus to control the mutation rate at the locus where

the nm deleterious mutations accumulate whose number are thus endogenously determined (Fig. 1).

We assume that the effective number of births b(a) and the death d(a) of an individual of age a

can depend on both the number of deleterious mutations nm(a) at age a and the life-history schedule

u. The life history schedule u thus not only affects the vital rates, as usually assumed in life-history

theory, but also the rate of deleterious mutation accumulation (see also Fig. 1). The vital rates may

further depend on properties of the population, such as age class densities and allele frequencies, but we

leave this dependence implicit for now. We note that when measured on an exponential scale, the death

and mutation rates define a survival probability exp(−d(a)) and an immutability probability exp(−µ(a))

(probability that no mutations occur in an individual of age a). Note that for a discrete time process the

birth function b(a) gives the expected number of offspring produced by an individual of age a, while for

a continuous time process b(a) is defined as the rate at which an individual produces a single offspring.

Finally, we make the following mutational monotonicity assumption, which will be central in our analysis.

1. Mutations at the locus determining nm can only be deleterious or neutral. The effective birth rate

bi(a), survival probability exp(−di(a)), and immutability probability exp(−µi(a)) of an individual

at age a with nm(a) = i mutations are non-increasing functions of the number of mutations.

Formally, bi(a) ≥ bi+1(a), di(a) ≥ di+1(a), and µi(a) ≥ µi+1(a).

2. Mutations can only accumulate within an individual. There are no back mutations and an individual

with i mutations can only mutate towards having i+ 1 mutations.

We are concerned in this paper with formalising selection at the life-history locus. Namely, the

objective of our analysis is to develop a tractable evolutionary invasion analysis to evaluate candidate

evolutionary stable life-history trait u∗ ∈ U[T] that will be favoured by long-term evolution.

2.2 Invasion analysis for life-history with mutation accumulation

2.2.1 Invasion analysis

Evolutionary invasion analysis (e.g., Eshel and Feldman, 1984; Parker and Maynard Smith, 1990; Metz

et al., 1992; Charlesworth, 1994; Ferrière and Gatto, 1995; Eshel, 1996; Otto and Day, 2007; Mullon

et al., 2016) could be applied straightforwardly to our model in the absence of deleterious mutations as
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follows. Mutations at the life-history trait are postulated to be very rare so that one can focus on the

invasion fitness ρ(u,v) of a mutant trait u introduced at low frequency in a population monomorphic

for some resident life-history trait v that has reached its equilibrium. The invasion fitness is the per

capita number of mutant copies produced per unit time by the mutant lineage descending from the initial

mutation, when the mutant reproductive process has reached a stationary state distribution (over ages

and the number of deleterious mutations) in a resident population and the mutant remains overall rare

(i.e. geometric growth ratio of the mutant). Traits that are resistant to invasion define candidate end-

points of evolution and are found by maximising the invasion fitness of the mutant holding the resident

at the uninvadable population state. In others words, an uninvadable trait u∗ is a best response to itself;

namely

u∗ ∈ arg max
u∈U[T]

ρ(u,u∗), (1)

so that in the resident population state u∗, no mutant trait deviation can increase invasion fitness.

To be a meaningful endpoint of evolution, an uninvadable trait needs to be an attractor of the

evolutionary dynamics and thus be convergence stable (Eshel and Motro, 1988; Geritz et al., 1998; Leimar,

2009). When mutant and resident traits are sufficiently close to each other so that selection is weak, the

gradient of invasion fitness–the selection gradient–is sufficient to determine whether a given mutant can,

not only invade the resident population, but also become fixed in it (the so-called “invasion implies

substitution” principle applying to the present and more complex demographic scenarios, Rousset, 2004;

Priklopil and Lehmann, 2021). As a result, invasion fitness alone under weak phenotypic deviations allows

to determine whether gradual evolution under the constant influx of mutations will drive a population

towards the uninvadable trait. An evolutionary invasion analysis thus generally consists in both using

invasion fitness to (i) characterise uninvadable traits (ii) and to determine whether these are attractors of

the evolutionary dynamics, thus allowing to make definite statements about co-evolutionary dynamics.

A useful summary of (co)-evolutionary adaptive dynamics concepts can be found in Geritz et al. (1998)

and individual-based stochastic simulations have repeatedly validated the conclusions of this approach in

genetic explicit contexts (e.g., Mullon et al., 2018; Mullon and Lehmann, 2019, see also Otto and Day,

2007; Dercole and Rinaldi, 2008 for textbook discussions).

This procedure to characterise stable and attainable life histories has been in use more or less explicitly

in standard life-history theory for decades (e.g., León, 1976; Michod, 1979; Schaffer, 1982; Iwasa and

Roughgarden, 1984; Perrin, 1992; Perrin and Sibly, 1993; Charlesworth, 1994; Day and Taylor, 2000;

Cichon and Kozlowski, 2000; Iwasa, 2000; Irie and Iwasa, 2005; Metz et al., 2016; Avila et al., 2019).

We now push forward this approach into the realm where life-history evolution interacts with mutation

accumulation and thus relax the standard life-history theory assumption that the rate of deleterious

mutations is zero. For this case, we still assume that mutations at the life-history locus are rare enough

so that whenever a mutant trait u arises, it does so in a resident population monomorphic for some

resident life-history trait v. But owing to the occurrence of deleterious mutations, the resident population
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will be polymorphic for the number of deleterious mutations, and this polymorphism will depend on v.

The resident population is then assumed to have reached a mutation-selection equilibrium for deleterious

mutations and the resident trait v thus determines a resident probability distribution p(v) over the

different number of deleterious mutations carried by individuals across the different age-classes. This

assumption is nothing else than the usual assumption of the internal stability of the resident population

used in invasion analysis (see e.g. Altenberg et al., 2017; Eshel and Feldman, 1984; Metz et al., 1992).

Here, it entails that the resident population has reached an equilibrium for both demographic and genetic

processes.

In the absence of age-classes, p(v) is the equilibrium probability distribution for the number of

deleterious mutations in standard selection-mutation balance models (see Bürger, 2000 for a general

treatment and where the sample space of p(v) reduces to N). For instance, when the number of novel

(deleterious) mutations follows a Poisson distribution with mean rate µ and each additional mutation

decreases baseline fecundity by a constant multiplicative factor σ in a semelparous population, then

p(v) is Poisson distributed with mean µ/σ (Haigh, 1978, Bürger, 2000, p. 300). This holds in an age-

structured population across age-classes under certain but limited number of conditions (Steinsaltz et al.,

2005). More generally, p(v) will depend on the details of the model.

2.2.2 Invasion process with mutation accumulation

Since the mutant trait u can arise in individuals carrying different numbers of deleterious mutations,

the invasion process of u is contingent on the genetic background in which it arises, and we refer to

the initial carrier of the u trait as the progenitor (or ancestor) of u. The invasion fitness of u is then

determined by the size of the lineage of the progenitor, which consists of all of its descendants carrying

u far into the future. Namely, the immediate descendants of the progenitor including the surviving

self, the immediate descendants of the immediate descendants, etc., covering the whole family history

tree ad infinitum. Crucially, descendants may accumulate deleterious mutations during the process of

initial growth or extinction of the mutant lineage when this lineage is rare (referred to throughout as the

“invasion process”). As such, the invasion process, whether it occurs in continuous or discrete time, can

be regarded as a multitype age-dependent branching process (Mode, 1968, 1971) since during growth or

extinction, novel genotypes are produced by mutation. To analyse this process, it is useful to organise

individuals into equivalence classes. The defining feature of an equivalence class is that it is a collection

of states of a process among which transitions eventually occur, so the states are said to communicate

(Karlin and Taylor, 1975, p. 60). The equivalence class Ci will stand for all mutant individuals carrying

i deleterious mutations and thus consist of individuals of all age classes. This is an equivalence class

because through survival and reproduction, an individual of any age with i mutations may eventually

transition to become an individual of any other age (in the absence of menopause). This follows from

the fact that the process of survival and reproduction in an age-structured population in the absence of

mutations (and menopause) is irreducible (Caswell, 2000). Indeed, starting in any age-class, eventually
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every age-class can be reached. Owing to the mutational monotonicity assumption, however, starting

in a given class, it is possible to enter another class, but not transition back from that class (otherwise

the two classes would form a single class). The mutant population process is thus overall reducible and

can be regarded as a reducible multitype age-dependent branching process (Nair and Mode, 1971; Mode,

1971). We say that equivalence class Ci+1 follows class Ci since individuals in equivalence class i can only

transition to class i+ 1 by acquiring mutations.

To see why the notion of equivalence class is useful to understand the invasion process, let us focus

on a discrete time process with discrete age classes; namely, T = {0, 1, 2, ..., T} and denote by ni(t) the

expected number of individuals at time t in class Ci that descend from a single class Ci newborn ancestor

born t time-units ago (i.e. ni(0) = 1). Then, accounting for all the descendants of the progenitor

(including the surviving self) entails that ni(t) satisfies the renewal equation

ni(t) = l̃i(t) +
t∑

a=0

ni(t− a)b̃i(a)l̃i(a), (2)

where l̃i(a) is the probability that a Ci class newborn survives to age a and has not acquired any new

mutations (we assume that l̃i(a) → 0 as a → ∞, since death or mutation must eventually occur). The

quantity b̃i(a) is the expected number of (newborn) offspring without new mutations produced by an

individual of age a that carries i deleterious mutations. Hence, the first term on the right-hand-side of

eq. (2) accounts for the survival and immutability of the ancestor itself until age t. The second term

projects the expected number of individuals without mutations descending from the progenitor at t− a

(and for all a ≤ t) into new lineage members without mutation at t. Together, these two terms thus give

the total lineage size of the progenitor and a key feature of eq. (2) is that it depends only on the vital rates

and states of individuals of class Ci. As such, eq. (2) is functionally equivalent to the standard renewal

equation of population dynamics in discrete age-structured populations (Charlesworth, 1994, eq. 1.34).

It then follows from standard results (e.g., Charlesworth, 1994, p. 25-26) that asymptotically, as t → ∞,

the number ni(t) grows geometrically as

ni(t) ∼ ρti Ki, (3)

where Ki is a constant depending on the process and ρi is the unique root satisfying the characteristic

(or Euler-Lotka) equation
∑T

a=0 ρ
−a
i l̃i(a)b̃i(a) = 1.

Since individuals of class i contribute to individuals of class i+1 through mutations (the equivalence

class Ci+1 follows class Ci), then ni(t) does not describe the total expected lineage size of the progenitor.

However, owing to the mutational monotonicity assumption, the growth ratio ρi is at least as large as

ρi+1, i.e., ρi ≥ ρi+1 for all i. This implies that when the ancestor is of type i, the expected lineage size

is determined by the growth ratio ρi, since it dominates that of any other following equivalence class.

Hence, asymptotically, the total expected lineage of an Ci class progenitor has geometric growth ratio ρi.

It further follows from the theory of multitype age-dependent branching processes that the realised lineage
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size of a single progenitor (a random variable) has growth ratio ρi if ρi > 1 and otherwise, if ρi ≤ 1, the

lineage goes extinct with probability one (Mode, 1971, Theorem 7.2 p. 245, Corrolary 6.1 p. 280, see also

Mode, 1968 for the single type case). Further, ρi ≤ 1 if (and only if) R̃i ≤ 1, where R̃i =
∑T

a=0 l̃i(a)b̃i(a)

is the expected number of offspring of the progenitor produced throughout its lifespan (i.e. Mode, 1971,

Theorem 7.2 p. 245, Corrolary 6.1 p. 280, see also Karlin and Taylor, 1981, p. 424, Caswell, 2000). Hence,

ρi is an appropriate measure of invasion fitness and R̃i is an appropriate proxy of it, for a type i mutant

u arising in an resident v background (for a discussion of various biological representations of invasion

fitness and proxies thereof see Lehmann et al., 2016). The same argument can be made for continuous

time processes, in which case ρi = exp (ri), where ri is the rate of natural increase of the lineage size of

a progenitor of type i, i.e., the Malthusian growth rate (see Appendix A).

2.3 Uninvadability for dominating least loaded class

The key feature of the invasion process in a population with distinct mutational equivalence classes is that

the invasion of a mutant depends on the class in which it appears (ρi for class i), which in turn depends

on the distribution p(v). This means that there are as many growth rates as equivalence classes, since

the invasion process is reducible (see also Altenberg, 2009, p. 1278). Therefore characterising long-term

evolution using a single representation of invasion fitness (or proxy thereof) is at first glance unattainable

under our modelling assumptions. Yet, as a first-step, it also seems reasonable to consider a situation

where the mutation-selection process is such that the least-loaded class C0 dominates the population in

frequency (i.e. the frequency of the zero-class individuals is close to one). If selection is stronger than

mutation, then deleterious alleles will tend to be purged and the mutation-selection balance will be far

away from the error threshold of mutation accumulation or meltdown of asexual populations (e.g., Eigen,

1971; Lynch et al., 1993; Szathmary and Maynard Smith, 1997). For instance, in the classical mutation-

selection equilibrium model mentioned in section 2.2.1 (Haigh, 1978, Bürger, 2000), the frequency of the

zero mutation class is e−µ/σ. So when µ ≪ σ, say for definiteness the selection coefficient is one order

of magnitude larger than the mutation rate (e.g. for µ = 0.01 and σ = 0.1, µ/σ = 0.1), then the least

loaded class dominates in frequency (e−µ/σ ≈ 0.9). Under these conditions, the click rate of Muller’s

ratchet (Muller’s ratchet is said to click when the class of individuals with the least amount of deleterious

mutations in the population becomes extinct) is small for finite but sufficiently large population sizes.

For instance, in a population of size N = 1000, the click rate is 8.4 × 10−34 (obtained from 1/τ where

τ = σ
√
2πN/µ×exp

(
N
(
σ − µ

(
1− log

(
µ
σ

))))
/(σ−µ)2 is the inverse of the click rate, see eq. 23 Metzger

and Eule, 2013, where σ = s and µ = u). Hence, the click rate of Muller’s ratchet can be considered

negligible compared to the scale of mutation rates. Thus, whenever the selection coefficient is one order

of magnitude larger than the mutation rate, whenever a mutant life-history trait u appears in a resident

v population, it is likely to arise on a zero mutation background (i.e. in class C0 individuals).

Endorsing the assumption that the least-loaded class dominates in frequency then allows to charac-

terise the fate of mutant u appearing in a resident v population (recall eq. 1) directly from the growth
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ratio

ρ(u,v) = ρ0(u,v), (4)

of the least-loaded class. Further, since ρ0(u,v) ≤ 1 ⇐⇒ R̃0(u,v) ≤ 1, where R̃0(u,v) is the basic

reproductive number of the least-loaded class, i.e. the expected number of class C0 offspring produced

by a class individual C0 individual over its lifespan, is sufficient to characterise the fate of the mutant. It

then follows that an uninvadable strategy u∗ can be characterised in a discrete age-structured population

as

u∗ ∈ arg max
u∈U[T]

R̃0(u,u
∗), (5)

which entails maximising (in the best response sense) the basic reproductive number of the least-loaded

class. Likewise, multi-dimensional convergence stability (Lessard, 1990; Leimar, 2009) can be assessed

from R̃0(u,u
∗). And this reproductive number is given explicitly in terms of vital rates by

R̃0(u,v) =

T∑
a=0

b̃0(a,u,v)l̃0(a,u,v), (6)

where

b̃0(a,u,v) = b0(a,u,v)× exp (−µf(a,u,v)) (7)

and

l̃0(a,u,v) = l0(a,u,v)× exp

(
−

a−1∑
t=0

µs(t,u,v)

)
with l0(a,u,v) =

a∏
t=0

s0(t,u,v). (8)

Here, b0(a,u,v) is the effective fecundity of an individual of age a who has no mutations, s0(a,u,v) =

exp (−d0(a,u,v)) is the probability that such an individual survives over the age interval [a, a+ 1] (and

d0(a,u,v) is its death rate), and l0(a,u,v) is the probability of survival to age a. In eqs. (7)–(8), we have

distinguished between the mutation rate during reproduction µf(a,u,v), which is the rate of mutations

in newborn offspring while the parent giving birth is of age a, and the mutation rate during lifespan

µs(a,u,v), which is the rate of germline mutations in an organism of age a. Note that the vital rates

b0(a,u,v) and s0(a,u,v) depend on the resident population and can thus be possibly affected by density-

dependent regulation. When µf(a,u,v) = µs(a,u,v) = 0 for all a ∈ T, eq. (6) reduces to the standard

basic reproductive number for age-structured populations (e.g. Charlesworth, 1994). We emphasise that

we allowed for fecundity, survival and mutation rate to be dependent on the whole life history schedule

because the evolving traits may affect physiological state variables (e.g. body size). As long as there is a

direct correspondence between age and physiological state (see e.g. the discussion in de Roos, 1997), then
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the extension of current formalisation to physiologically-structured populations is direct (see also section

3.2 for an example). Furthermore, individuals can also be affected by the (physiological) state variables

of other individuals (e.g. size-dependent competition) and hence our formulation implicitly covers these

situations and frequency- and density-dependent interactions more generally.

For a continuous time process with a continuous age structure (T = [0, T ]), we show in Appendix A

that the basic reproductive number of the least-loaded class is

R̃0(u,v) =

∫ T

0

b̃0(a,u,v)l̃0(a,u,v) da, (9)

where b̃0(a,u,v) takes the same functional form as in eq. (7) but is now interpreted as the effective birth

rate (of offspring with no mutations) at age a, and l̃(a,u,v) satisfies the differential equation:

dl̃0(a,u,v)

da
= − [d0(t,u,v) + µs(t,u,v)] l̃0(a,u,v) subject to l̃0(0,u,v) = 0. (10)

We now make four observations on the use of R̃0(u,v) to characterise long-term coevolution for life-

history traits and mutation rates. (1) Because R̃0(u,v) depends on the amount of deleterious mutations

in the population solely via v, the distribution p(v) is needed only under frequency-dependent selection.

This makes life-history evolution in the presence of deleterious mutations tractable even if the underlying

evolutionary process of mutation is not (see section eq. 3.2 for an example). The characterisation of

uninvadability using R̃0(u,v) (and thus applying eqs. 4–10) generalises the results of Dawson (1998,

p. 148) to overlapping generations and an explicit life-history context (and has been used before in the

study of direct selection on a mutation modifier in semelparous populations see e.g. Leigh, 1970; Dawson,

1999). (2) Because R̃0(u,v) takes the standard form of the basic reproductive number, the results of

optimal control and dynamic game theory can be applied to characterise uninvadability. This is useful

in particular for reaction norm and developmental evolution and formalising different modes of trait

expressions (see Avila et al., 2021). (3) While low mutation rates relative to selection are presumed to

be able to use R̃0(u,v) as a proxy for invasion fitness, these mutation rates are endogenously determined

by the uninvadable strategy. It is thus plausible that the uninvadable mutation rate generally entails low

mutation rate. So the assumption of low mutation rate may not appear so drastic and the extent to which

this assumptions is limiting depends on investigating explicit evolutionary scenarios. (4) If deleterious

mutations are such that all the ρi’s are proportional to ρ0’s, which is the case for the standard mutation

accumulation models with multiplicative effect of (deleterious) mutations, then using R̃0 does no rely on

making the assumption of low mutation rates relative to selection, since regardless in which background

the mutation appears, it will grow proportionally to ρ0, and so if R̃0 is maximised (in the best response

sense) so will ρ0.

This gives good reasons to use R̃0(u,v) as a proxy of invasion fitness and as such, in the rest of this

paper we consider two scenarios of life-history and mutation accumulation coevolution that we analyse by

using R̃0(u,v). This allows us to illustrate the different concepts, demonstrate the usefulness of focusing
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on R̃0(u,v) to get insights about how life-history evolution interacts with mutation accumulation, and

check results against individual-based stochastic simulations.

3 Examples of life-history and mutation rate coevolution

3.1 Coevolution of reproductive effort and germline maintenance

3.1.1 Biological scenario

Our first scenario considers the evolution of reproductive effort when resources can be allocated to

(germline) maintenance in an iteroparous population. To that end, we assume a population with a

large but fixed number N of individuals undergoing the following discrete time life-cycle. (1) Each of

the N adult individuals produces a large number of juveniles and either survives or dies independently

of other individuals. Juveniles and surviving adults acquire mutations at the deleterious allele locus at

the same rate. (2) Density-dependent competition occurs among juveniles for the vacated breeding spots

(left by the dead adults) and the population is regulated back to size N .

We postulate that individuals have a static life-history trait consisting of two components u = (ug, us)

(u ∈ U[T] = [0, 1]2), which determines how a fixed amount of resources available to each individual is

allocated between three physiological functions: (i) a proportion (1−ug)(1−us) of resources is allocated

to reproduction, (ii) a proportion (1 − ug)us of resources is allocated to survival, and (iii) a proportion

ug of resources is allocated to germline maintenance.

We assume that an individual with trait u and i deleterious mutations has the following fecundity

fi(u), survival probability si(u), and mutation rates µf(u), µs(u) (at giving birth and when surviving to

the next generation, respectively),

fi(u) = f0(u)× (1− σf)
i

si(u) = s0(u)× (1− σs)
i

µ(u) = µs(u) = µf(u) = µb (1− ug)
αµ ,

(11)

where σf and σs are, respectively, the reductions in fecundity and survival from carrying an additional

deleterious mutations (that are assumed to act multiplicatively), µb is the baseline mutation rate (muta-

tion rate when allocation to germline maintenance is at its minimum, ug = 0), and αµ is the maintenance

scaling factor (a parameter tuning how investing a unit resource into maintenance translates into reducing

the mutation rate). We assume that αµ > 1, such that µ(u) has decreasing negative slopes in ug and

hence exhibits diminishing returns from investment into germline maintenance.

The quantities f0(u) and s0(u) are, respectively the fecundity and survival of the least-loaded class
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and they are written as

f0(u) = fb

(
(1− us)(1− ug)

)αf

s0(u) = sb

(
us(1− ug)

)αs

.
(12)

Here, fb and sb are, respectively, the baseline fecundity and baseline probability of survival; αf and

αs are, respectively, the fecundity and survival scaling factors (parameters tuning how a unit resource

translates into fecundity and survival). We assume that αf, αs ≤ 1 whereby both survival and fecundity

have decreasing positive slopes in net amount of resources allocated to them and thus exhibit diminishing

returns. Lower values of αf and αs correspond to more strongly diminishing returns of investing resources

into reproduction and survival, respectively. In the absence of mutation rate, the model reduces to

the standard model of reproductive effort of life-history theory with trade-off between reproduction and

survival (Charnov, 1993; Pen, 2000; Case, 2000). Conversely, with no over-lapping generations and no

life-history evolution, the model reduces to the classical model of mutation accumulation (Haigh, 1978;

Bürger, 2000), and with zero survival and resource allocation evolution, it is equivalent to the asexual

model of Dawson (1998). The model thus combines an unexplored trade-off between life-history traits

(survival and reproduction) and immutability (germline maintenance).

3.1.2 Basic reproductive number

From the model assumptions, we have that the survival of the least-loaded class (eq. 8) reduces to

l̃0(a,u,v) = s0(u)
a exp (−µ(u)a) (13)

and the effective fecundity of the least-loaded class (eq. 7) can be written as

b̃0(a,u,v) = b̃0(u,v) = (1− s̄(v))
f0(u)

f̄(v)︸ ︷︷ ︸
b0(u,v)

exp (−µ(u)) , (14)

which depends on the mean survival and fecundity in the population, respectively, s̄(v) =
∑∞

k=0 sk(v)pk(v)

and f̄(v) =
∑∞

k=0 fk(v)pk(v). Here, pi(v) is the probability that an individuals randomly sampled from

the resident population carries i deleterious mutations (and so p(v) = {pi(v)}i∈N for this model). This

can be understood by noting that (1− s̄(v)) is the fraction of open breeding spots available to a juvenile

and the probability that the offspring of a given adult acquires a breeding spot depends on the fecundity

of the adult relative to the population average fecundity (as each juvenile is equally likely to acquire a

breeding spot).

Since there is no fixed end to lifespan under the above life-cycle assumptions (so T → ∞) and using
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eq. (6) along with eqs. (13)–(14) entails that

R̃0(u,v) =
b0(u,v)

exp(µ(u))− s0(u)
, (15)

(all our mathematical computations can be followed and confirmed via an accompanying Supplementary

Information, S.I. consisting of a Mathematica notebook). Since b0(u,v) is multiplicatively separable

with respect to its arguments then it follows from eq. (15) that the model satisfies the condition of an

optimisation principle (e.g., Metz et al., 2008). Namely, R̃0(u,v) = F1(u)F2(v) for the functions F1(u) =

f0(u)/[exp(µ(u))− s0(u)] depending only on the mutant and F2(v) = [1− s̄(v)]/f̄(v) depending only on

the resident. It follows that maximising F1(u) is sufficient to ascertain uninvadability and uninvadability

implies convergence stability when the evolutionary dynamics follows an optimization principle (Metz

et al., 2008). Further, the explicit expressions for s̄(v) and f̄(v), and thus the distribution p(v) are not

needed to carry out the invasion analysis. All this allows to markedly simplify the evolutionary analysis.

We will nevertheless work out the resident distribution p(v) so as to have a fully worked example that

allows for consistency checks and illustrating the concepts. Since we consider a deterministic resident

population process, the frequency pk satisfies at equilibrium the equation

pk(v) =
k∑

i=0

ϕk−i(v)wi(v)pi(v), (16)

where wi(v) = si(v) + (1− s̄(v)) fi(v)/f̄(v) is the individual fitness– survival plus effective fecundity–of

an individual with i deleterious mutations, and ϕk is the probability that k deleterious mutations are

produced upon reproduction. Assuming that the mutation distribution is Poisson with mean µ(v) and

σs = σf = σ, then eq. (16) becomes structurally equivalent to eq. (1) of Haigh (1978) and eq. (5.3)

of Bürger (2000, p. 300) (with mean fitness w̄ = 1 since population size is constant) and as such the

equilibrium distribution p(v) is Poisson with mean λ(v) = µ(v)/σ (see also the section 1.1.1. in SM).

This completely characterises the genetic state of the resident population and implies that

s̄(v) = s0(v)e
−µ(v) and f̄(v) = f0(v)e

−µ(v). (17)

Substituting the explicit expression for the survival and effective fecundities (eq. 17) into eq. (15) shows

that in a monomorphic v population R̃0(v,v) = 1, as required for a consistent model formulation.

Eq. (17) generalises the standard mutation-accumulation model of population genetics to overlapping

generations with survival probability depending on the number of deleterious mutations (see e.g. eq. 3.3

Kimura and Maruyama, 1966).

3.1.3 Uninvadable and convergence stable strategies

We now carry out the invasion analysis explicitly following the standard approach of working with selection

gradients (e.g., Parker and Maynard Smith, 1990; Frank, 2008; Geritz et al., 1998; Rousset, 2004; Mullon
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et al., 2016). Using eq. (11), (12), (14), and (17) in eq. (15) and taking the derivative with respect to ug,

we find that the selection gradient on maintenance can be written as

∂R̃0(u,v)

∂ug

∣∣∣∣∣ug=vg
us=vs

=
1

(1− s̄(v)) (1− vg)

(
αµµ(v)−

[
αss̄(v) + αf (1− s̄(v))

])
, (18)

where the terms in parenthesis display the trade-off between allocating resources into maintenance vs.

the two vital rates. The first term in eq. (18) is the marginal benefit of investment into repair, which is a

decreasing function of vg. The second term is the marginal cost of investment into maintenance and this

depends on the weighted sum over average survival and open breeding spots. This is a concave function

of vg if αs > αf, a convex function of vg if αs < αf, and independent of vg if αs = αf = α. Decreasing αµ,

αs, and αf favours allocation of resources to maintenance, since it yields higher returns from investment

into germline maintenance (recall that lower values of parameter αµ means that investing resources into

germline maintenance exhibits weaker diminishing returns of investment and lower values of parameters

αf and αs means that investing resources into fecundity and survival, respectively, exhibits stronger

diminishing returns of investment). We find that the selection gradient on survival can be written as

∂R̃0(u,v)

∂us

∣∣∣∣∣ug=vg
us=vs

=
1

1− s̄(v)

(
αss̄(v)

vs
− αf(1− s̄(v))

(1− vs)

)
, (19)

where the terms in the parenthesis display the trade-off between allocating resources into survival vs.

fecundity. The first term in eq. (19) is the marginal benefit of investments into survival, which is a

decreasing function of vg, while the second term is the marginal benefit of investments into fecundity,

and increasing function of vg. This trade-off is the classical reproductive effort trade-off (e.g., Pen, 2000,

eq. 4) with the difference that it is here affected by the mutation rate. In particular, an increase in the

baseline mutation rate µb(vg) favours higher allocation to survival (by increasing s̄(v)).

A necessary condition for (u∗
g, u

∗
s ) = u∗ to be an evolutionary equilibrium is that the selection gradients

vanish at this point (for an interior equilibrium, i.e. 0 < u∗
g, u

∗
s < 1), i.e. ∂R̃0(u,v)/∂us = 0 and

∂R̃0(u,v)/∂ug = 0 evaluated at v = u = u∗. Without further assumptions on eqs. (18)–(19), we were

unable to find such analytical solutions. But setting αs = αf = α, we find that there is a unique solution

u∗
g =

 0 if µb ≤ α
αµ

1−
(

α
αµµb

) 1
αµ

otherwise

, u∗
s =


(

exp(µb)
sb

) 1
α−1

if µb ≤ α
αµ(

exp( α
αµ

)
(

α
αµµb

)− α
αµ

sb

) 1
α−1

otherwise

(20)

with corresponding expressions for the mutation rate µ(u∗) and mean number of novel (deleterious)

mutations λ(u∗) taking the following form

µ(u∗) =

 µb if u∗
g = 0

α/αµ if u∗
g > 0

, λ(u∗) =

 µb/σ if u∗
g = 0

α/(αµσ) if u∗
g > 0

. (21)
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Eq. (20) determines the candidate uninvadable and convergence stable trait values. We checked that

for biologically realistic parameter values (e.g. for the parameter values in Fig. 2) these trait values

are indeed uninvadable and convergence stable using the standard approach (Eshel, 1983; Taylor, 1989;

Geritz et al., 1998; Mullon et al., 2016 and see section 1.5.3. in S.I.) and thus are stable attractors of the

co-evolutionary dynamics. And while we derived the u∗ assuming αf = αs in eq. (20), we numerically

checked the robustness of the qualitative behaviour of the results with respect to changes in the values

of parameters, such that αf ̸= αs and we find that overall behaviour of the results remain the same (see

section 1.1.4. of S.I.).

Using individual-based stochastic simulations, Fig. (3) demonstrates that the co-evolutionary dynam-

ics indeed converges towards the uninvadable strategy u∗ (eq. 20) predicted by the analytical model.

Fig. (2) illustrates the uninvadable life-history strategies u∗ = (u∗
g, u

∗
s ) (panels a and b), the correspond-

ing mutation rate µ(u∗) (panel c) and the mean number of novel mutations λ(u∗) (panel d) as a function

of the baseline mutation rate µb. We can observe from Fig. (2) that the analytically obtained results

(eq. 20–21) correspond very closely to those obtained by carrying out individual-based stochastic sim-

ulations of the full process, which implements the life-cycle and assumptions of the present biological

scenarios but allows for mutation at the life-history locus (e.g. Fig. 1 and see Appendix B for the de-

scription of the simulations and the S.I. for the Mathematica code of the simulations). We observed that

simulations outcomes generally matched well with the analytical predictions when the selection coeffi-

cient is one order of magnitude larger than the baseline mutation rate (e.g., recall the first paragraph of

section 2.3).

Three main results can be drawn from eqs. (20)–(21) and Fig. 2. First, selection favours physiolog-

ically costly germline maintenance at the expense of lowering investment into vital rates (survival and

reproduction), especially when baseline mutation rate is higher (see Fig. 2a). And as expected, invest-

ment into maintenance is higher when returns from investment into vital rates diminish more abruptly

(α is smaller). Second, when germline maintenance evolves, the mutation rate (µ(u∗)) depends only

on the scaling factors (α and αµ) and is independent of the baseline mutation rate µb (see Fig. 2c and

eq. 21). This is so in this model because the effect of µb on the cost of germline maintenance via the ex-

pected survival s̄(u∗) cancels out due to the nature of density-dependence (decrease in expected survival

is cancelled out by the increase in the expectation of acquiring a breeding spot; see eq. 18 when taking

αs = αf = α). Third, the reproduction-survival trade-off entails that a shift towards higher allocation to

reproduction occurs as µb increases (Fig. 2b). This is so because the effect of the mutation rate on fitness

is similar to that of external mortality and thus decreases the value of allocating resource to survival.

As a result, reproduction is prioritised when µb is large. Connected to this observation, we find that

immortality (complete survival, s̄(u∗) = s0(u
∗) = 1) can evolve only in the absence of external mortality

(sb = 1) and zero baseline mutation rate (µb = 0, see eq. (20)). In section 1.1.4. of S.I., we numerically

checked that our results are qualitatively robust when relaxing the assumption that the scaling factors

of investment into reproduction and survival are not equal αf ̸= αs.
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3.2 Coevolution of age at maturity and germline maintenance

3.2.1 Biological scenario

Our second scenario is about the evolution of the time at maturity when mutation accumulation can occur

during growth and reproduction. To that end, we consider that age is continuous and each individual

undergoes the following events. (1) An individual is born and grows in size until it reaches maturity

(growth phase). (2) At maturity an individual starts to reproduce at a constant rate and fecundity

is assumed to be density dependent (reproductive phase). (3) Throughout their lives individuals die

at some constant rate and acquire mutations. We postulate that individuals have again a life-history

trait consisting of two components u = (ug, um), where ug is the allocation to germline maintenance

(lowering the mutation rate) and um is the age-at-maturity. The life-history trait u determines how

resources are allocated between three physiological functions: (i) a proportion ug of resources is allocated

to maintenance of the germline at any age a, (ii) a proportion (1−ug) of resources are allocated to growth

when an individual is of age a < um, (iii) a proportion (1− ug) of resources is allocated to reproduction

when an individual is at age a ≥ um, (hence u ∈ U[T] = [0, 1]2).

We assume that an individual with trait u and i deleterious mutations in a population with resident

trait v has birth, death, and mutation rate throughout lifespan given by

b̃i(u,v) = b̃0(u,v)− iσb if age a ≥ um, zero otherwise

di = db + iσd

µ(ug) ≡ µs(ug) = µb(1− ug)
αµ ,

(22)

where σb and σd are, respectively, the effects on birth and death from carrying deleterious mutations,

which are assumed to act additively. The death rate of an individual of the least-loaded class is determined

by the baseline death rate db and the birth rate of such an individual is assumed to be given by

b̃0(u,v) = B(xm(u))(1− uαb
g )(1− γN(v))︸ ︷︷ ︸

b0(u,v)

exp(−µf), (23)

where B(xm(u)) is the surplus energy rate, i.e., rate of energy available to considered life-history functions.

This depends on the size xm(u) of the individual at maturity. Here, (1− uαb
g ) represents how reproduc-

tion depends on the allocation strategy and uαb
g represents the cost to reproduction when allocating a

proportion ug of resources to germline maintenance. The parameter αb is a scaling factor (αb > 1 corre-

spond to diminishing returns of investing resources into reproduction). The term (1− γN(v)) accounts

for density-dependent regulation of reproduction, where N(v) is the total population size of the resident

population and γ tunes the intensity of density dependence. Finally, exp(−µf) is the probability that the

offspring do not acquire new mutations during reproduction where the mutation rate at giving birth µf is

assumed constant. In order to close the expression for the birth rate, we need an explicit expression for
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size at maturity xm(u). During the growth phase, we postulate that size follows the differential equation

ẋ(t) = βB(x(t))(1− uαb
g ) with i.c. x(0) = x0, (24)

where B(x(t)) is the surplus energy rate and (1−uαb
g ) represents the proportional allocation of resources

devoted towards growth (instead of repair). For tractability, we assume that (1−uαb
g ) has the functional

form as the proportional allocation towards reproduction (eq. 23) and β allows to tune how much resources

are needed to grow one unit, compared to the resources needed to produce one offspring. We assume

that the surplus energy rate is given by the power law B(x(t)) = ax(t)c, which is considered to be

appropriate for modelling size/age-at-maturity under determinate growth (see Day and Taylor (1996) for

a justification). It follows from integrating eq. (24) that the size at maturity takes the form

xm(u) =
(
βa(1− c)(1− uαb

g )um + x1−c
0

) 1
1−c

. (25)

In the absence of mutation rate, the model reduces to the standard model of age-at maturity (Kozlowski,

1992; Day and Taylor, 1997; Stearns, 1992; Roff, 2008). The model thus combines an unexplored trade-

offs between life-history traits (growth and reproduction) and immutability (germline maintenance and

repair).

3.2.2 Basic reproductive number

For this model there is also no definite end to lifepan (and so T → ∞) and using eq. (9) with the life-cycle

assumptions entails that the basic reproductive number of the least-loaded class reduces to

R̃0(u,v) = b̃0(u,v)

∫ ∞

um

l̃0(a,u,v) da, (26)

where l̃0(a,u,v) = exp
(
−(µ(ug) + db)a

)
. Substituting the expression for eq. (23) into eq. (26) and

integrating yields

R̃0(u,v) = B(xm(u))
(
1− uαb

g

)
exp(−µf)×

exp
(
−(µ(ug) + db)um

)
µ(ug) + db︸ ︷︷ ︸

F1(u)

× (1− γN(v))︸ ︷︷ ︸
F2(v)

. (27)

This shows that one can again express the basic reproductive number as a product of the form R̃0(u,v) =

F1(u)F2(v) and thus the optimisation principle (e.g. Metz et al., 2008) applies also in this model. This

means that evaluating N(v) explicitly is not needed to ascertain uninvadability (and uninvadability will

again imply convergence stability for this model). We will nevertheless work it out and in order to derive

an explicit expression for N(v) it suffices to note that in a monomorphic resident population at a joint

demographic and genetic equilibrium, each individual belonging to the least-loaded class must leave on
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average one descendant with zero new mutations. Hence R̃0(v,v) = 1 implies that at the population size

at the demographic steady state is

N(v) =
B(xm(v))(1− vαb

g )− (db + µ(vg)) exp
(
µf + (µ(vg) + db)vm

)
γB(xm(v))(1− vαb

g )
, (28)

which holds regardless of the effects of deleterious mutations on the vital rates. This is a demographic

representation and generalisation of the surprising simple result noted for unstructured semelparous

populations of constant size that the nature of epistasis of deleterious mutations has no effect on the

genetic load (Kimura and Maruyama, 1966; Gillespie, 2004).

3.2.3 Uninvadable and convergence stable strategies

Let us now ascertain the strategies favored by long-term evolution. Using eq. (27) along with eq. (25),

taking the derivative with respect to ug, and rearranging using the property that R̃0(v,v) = 1, we find

that the selection gradient on maintenance can be written as

∂R̃0(u,v)

∂ug

∣∣∣∣∣um=vm
ug=vg

=
αµµ(vg)

(1− vg)

(
vm +

1

µ(vg) + db

)
− αbv

αb−1
g

(
β
cvmB(xm(v))

xm(v)
+

1

(1− vαb
g )

)
, (29)

where the two terms display the trade-off between allocating resources into maintenance vs. growth and

reproduction. The first term is the marginal benefit of investing into maintenance and the second term

is the marginal cost of investing into maintenance, which is a weighted sum of expected loss in growth

and reproduction. We find that the selection gradient on the age-at-maturity can be written as

∂R̃0(u,v)

∂um

∣∣∣∣∣um=vm
ug=vg

= c×
β
(
1− vαb

g

)
B(xm(v))

xm(v)
− (µ(vg) + db). (30)

The first term is the marginal benefit of investment into growth and thus the benefit for maturing later,

while the second terms is the marginal cost of investment into growth and thus the benefit for maturing

earlier. We can see that the increase in mutation rate will select for earlier age-at-maturity.

By first solving ∂R̃0(u,v)/∂um = 0 for u∗
m when evaluated at v = u = u∗, we obtain

u∗
m(u

∗
g) =

1

1− c
×
(

c

db + µ(u∗
g)

− x0

β[1− (u∗
g)

αb ]B(x0)

)
, (31)

which is a function u∗
g. Eq. (31) says that individuals tend to mature later, when individuals growth

rate at birth ẋ(0) (= β[1− (u∗
g)

αb ]B(x0)) is higher and/or when death rate db, mutation rate µ(u∗
g), and

birth size x0 are smaller (holding everything else constant). When µb → 0 and u∗
g → 0, age-at-maturity

reduces to u∗
m = (1− c)−1[c/db − x0/[βax

c
0], which is consistent with standard results about the optimal

age/size at maturity (see e.g. Day and Taylor, 1996) and it is useful to compare how allocation to germline

maintenance affects the age-at-maturity. In order to determine the joint equilibrium u∗ = (u∗
m, u

∗
g), we
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need to substitute eq. (31) into eq. (30) and solve for u∗
m and u∗

g at v = u∗. We were unable to obtain

an analytical solution for the general case. But restricting attention to αµ = αb = 2 (i.e. assuming

diminishing returns of investment into germline maintenance and reproduction), we find that

u∗
g =

2µb + db −
√
db(db + 4µb)

2µb

u∗
m =

1

(1− c)
×

[
c
(√d+

√
db + 4µb

2db
√
db + 4µb

)
− x0

βcB(x0)

(db + 2µb +
√

db(db + 4µb)

2
√

db(db + 4µb)

)] (32)

with corresponding mutation rate given by

µ(u∗
g) =

(db −
√
db

√
db + 4µb)

2

4µb
, (33)

while the corresponding population size N(u∗) can also be explicitly expressed in terms of parameters

but remains complicated (see section 2.1.4. in S.I. for the full expression).

We checked that for biologically realistic parameter values, the equilibrium u∗ = (u∗
g, u

∗
m) (see Fig. 4

panels (a) and (b) for graphical depiction of the equilibrium as a function of the baseline mutation rate)

determined by eq. (32) is uninvadable and convergence stable (e.g. for the parameter values in Fig. 4

and see section 2.5.4. and 2.5.5. in S.I.). Further, using individual-based stochastic simulations, we were

able to confirm that u∗ = (u∗
g, u

∗
m) given in eq. (32) is indeed as stable attractor of the evolutionary

dynamics (see Fig. 5 for a graphical depiction of convergence in the individual-based simulations for four

different initial population states). Fig. (4) also illustrates the equilibrium population size N(u∗) (panel

c), and the uninvadable mutation rate µ(u∗
g) (panel d) as a function of the baseline mutation rate µb.

Fig. (6) illustrates the body size at maturity xm(u
∗) (panel a) and the effective birth rate b̃0(u

∗,u∗) at

the uninvdable population state as a function of baseline mutation rate. Overall, Fig. (4) demonstrates,

again, that the analytically obtained results (here using eqs. 32–33) correspond very closely to those

obtained by carrying out individual-based simulations of the full process (see section 2.3. in S.I. file for

the Mathematica code).

Three main results can be drawn from eqs. (32)–(33) and Figs. 4 and 6. First, as in the previous

example, selection favours physiologically costly germline maintenance at the expense of lowering the

investment into life-history functions (here, into growth and reproduction, see Fig. 4a). Also, the unin-

vadable mutation rate (µ(u∗)) monotonically increases with the baseline mutation rate (Fig. 4d). Second,

we find that an earlier age at maturity and onset of reproduction compared to the standard life-history

prediction, especially when baseline mutation rate is high (Fig. 4b). This stems from the fact that, as

in the previous model, the mutation rate and the external mortality have a qualitatively similar effect

on fitness by decreasing effective survival of gene transmission and thus have the same effect on the

growth-reproduction trade-off. This can be observed mathematically, as the marginal cost of investment

into growth is given by (µ(vg) + db) (see the last term in eq. 30. For this reason we find that the shift in

growth-reproduction trade-off towards reproduction is higher under: (i) high external mortality rates and
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(ii) high baseline mutation rates. Since maturing earlier causes the growth period to be shorter, the body

size at maturity xm(u
∗) will also be smaller with higher baseline mutation rate µb (Fig. 6a). Smaller

body size at maturity, in turn, causes the birth rate b0(u
∗,u∗) to be smaller (Fig. 6b). Third, higher

baseline mutation rate causes smaller equilibrium population size (Fig. 4c), which is a known result in

population genetics (see e.g. Gabriel et al., 1993). In summary, we thus find that factors that increase

the baseline mutation rate cause higher investment into reproduction at the expense of smaller size and

earlier age at maturity, higher uninvadable mutation rate, and lower equilibrium population size.

4 Discussion

Our formalisation of the long term coevolution between life-history and deleterious mutation accumulation

shows that an evolutionary invasion analysis of this process is tractable when the deleterious mutation

rate is not too high so that the least-loaded class dominates in frequency the resident population. Then,

the basic reproductive number of the least-loaded class (eq. 6 and eq. 9) allows to characterise the joint

evolutionary stable life-history and deleterious mutation rate under a wide range of biological scenarios

under asexual reproduction in age-and physiologically-structured populations. We analysed two specific

scenarios to illustrate this invasion analysis approach: (i) coevolution between reproductive effort and

the mutation rate and (ii) coevolution between the age-at-maturity and the mutation rate. These two

models confirmed the validity of using the least-loaded class as a fitness proxy by comparing results to

those obtained by individual-based stochastic simulations (Figs. 2–4) and provide a number of insights

about life-history and deleterious mutation accumulation coevolution.

The model for the coevolution of reproductive effort with the mutation rate shows that positive

deleterious mutation rate evolves when selection against increasing the mutation rate is balanced by the

cost of germline maintenance and thus extends the well-known results from population genetics (Kimura,

1967; Kondrashov, 1995; Dawson, 1998, 1999) to an explicit life-history theory context. Here, we find

that the life-history resource allocation trade-off between reproduction and survival entails a shift towards

more allocation of resources to reproduction under high baseline mutation rate. This extends to evolving

mutation rate, the result of Charlesworth (1990) obtained from a numerical model that a higher level of

a fixed mutation rate (no germline maintenance) causes higher allocation to reproduction over survival.

We predict that the shift in survival-reproduction trade-off towards reproduction is stronger under: (i)

the conditions when converting resources into vital rates exhibits more abrupt diminishing returns (e.g.

for environments, where organisms have high maintenance costs, e.g. colder climates), (ii) high external

mortality rates (e.g. high predation environment), and (iii) high baseline mutation rates (e.g. induced

by environmental stressors). We also find that immortality (complete survival) cannot evolve even in an

environment with no external mortality because mutation rate cannot be brought down to zero. This

highlights the less appreciated role of mutation accumulation, in addition to the extrinsic, environmentally

caused hazards, that prevent the evolution of immortality (Medawar, 1952; Hamilton, 1966; Charlesworth,

1994). This means that the forces of selection on survival and reproduction (Hamilton, 1966; Ronce and
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Promislow, 2010) also decline due to mutation rate. Overall, this example reveals that endogenous and/or

exogenous factors that increase baseline mutation rate cause lower lifespans through higher allocation to

fecundity, while the observed mutation rate remains constant.

The model for the coevolution of age-at-maturity and the mutation rate similarly yields that positive

mutation rate is evolutionarily stable, but here germline maintenance trades off against investment into

growth and reproduction. This extends the observation of Dańko et al. (2012) from a numerical model

that looked at the effect of fixed mutation rate on the age-at maturity. They found that higher fixed

mutation rate (no germline maintenance) causes earlier age-at-maturity, but they concluded that this

effect would be relatively small and would be observable only under extreme conditions. Here, we show

that mutation rate can significantly affect life-history trade-offs, since allocation to germline maintenance

co-evolves with life-history. We predict that higher mutation rates are expected to be correlated with

smaller body size at maturity (earlier switch to reproduction) and lower equilibrium population size.

Increased baseline mutation rate thus increases the effect of drift and when the population size is small

enough the force of drift can no longer be ignored (Lynch et al., 2016), which can eventually lead to a

positive feedback between drift and mutation accumulation, i.e. mutational meltdown of the (asexual)

population (Gabriel et al., 1993). Our simulations show, however, that even for a population of about 2000

individuals, drift does not significantly affect the predictions of our model (see Fig. 4). Using individual-

based simulations, the coevolution between somatic maintenance, germline maintenance, body size at

maturity, and population size has been explored by (Rozhok and DeGregori, 2019) where they found

that selection for higher body size (by imposing size-dependent mortality) can lead to higher germline

mutation rate because more resources need to be invested into somatic maintenance. Thus, they found

that higher germline mutation rate and body size at maturity are expected to be negatively correlated

(an opposite prediction from our result). It is however unclear what is driving the selection towards

higher somatic maintenance at the expense of germline maintenance in their model and the generality of

their simulations needs to be further studied.

The analysis of these two models suggests two findings about how life-histories co-evolve with dele-

terious mutation rates. First, the trade-off between lowering the rate of mutations vs investing into life-

history functions affect the evolutionary outcome of life-history trade-offs (e.g. survival–vs–reproduction

or growth–vs–reproduction). Hence, mutation accumulation can have a significant effect on life-history

evolution through the process of coevolution that previous models focusing on the effect of fixed mutation

rates on life-history evolution have not revealed (Charlesworth, 1990; Dańko et al., 2012). Looking at the

effect of fixed mutation rates on life-history evolution underestimates the effect of deleterious mutation

accumulation on life-history evolution, as it does not take into account the effect of the physiological cost

of immutability on life-history evolution. Second, factors that contribute to higher baseline mutation rate

select for “faster” life-histories: higher investment into current reproduction at the expense of survival

and earlier age–at–maturity. Factors that could increase the baseline mutation rate µb include factors

that increase DNA replications errors (number of germ-line cell divisions) or environmental mutagens
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(oxygen level, nutrition quality, see e.g. Ferenci, 2019 for a review).

In conclusion, the physiological cost of lowering the mutation rate connects life-history trade-offs and

(deleterious) mutation accumulation. Studying the evolution of the interaction between life history and

mutation rate can enrich the understanding of diverse array of biological phenomena from the evolution

of ageing to patterns of mutation rate evolution. Our hope is that the formalisation proposed here can

be fruitfully used to this end.
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Appendix A: Continuous time invasion process with mutation accumulation

In section (2.2.2), we presented the renewal equation and growth rate for a discrete time process (eqs. 2–

8). Let us now consider that time is continuous and that age-structure is likewise continuous so that

T = [0,∞). For this case, accounting entails that the expected number ni(t) of individuals at time t that

descend from a single newborn (age class zero) ancestor residing at t = 0 in class Ci satisfies

ni(t) = l̃i(t) +

∫ t

0

ni(t− a)b̃i(a)l̃i(a) da, (A.1)

where all quantities maintain the same interpretation as in the discrete time case.

Eq. (A.1) is functionally equivalent to the standard renewal equation of population dynamics for con-

tinous age-structured populations (Charlesworth, 1994, eq. 1.41). As such, and as for the discrete time

case, it then follows from the standard results of population dynamic processes in age-structured popu-

lations (Charlesworth, 1994, p. 27) that asymptotically, as t → ∞, the number ni(t) grows geometrically

as

ni(t) ∼ ρti Ki, (A.2)

where Ki is some constant depending on the process and ρi = exp(ri), where ri is the mutant growth

rate (or Malthusian parameter), which is the unique root of the Euler-Lotka equation

∫ ∞

0

exp(−ari)b̃i(a)l̃i(a) da = 1. (A.3)

Appendix B: Description of individual-based simulations

We here describe how we carried out the individual-based (stochastic) simulations used for the two model

examples in the main text. The simulation algorithms scrupulously implement the life-cycle assumption

of these models with the only differences relative to the analytical model being that (i) population size

is finite and (ii) the mutation rate at the life-history locus is positive µLH > 0 (but kept small) in the

simulations. This makes the coevolutionary process in the simulations irreducible (see also discussion

section 2.3) and subject to genetic drift.

The simulation algorithm for the “Coevolution of reproductive effort and mutation rate” scenario (see

section 1.3. of S.I for the Mathematica code) follows a population composed of a finite and fixed number

(=7500 in the simulations) of individuals, where each individual is described by its genetic state (vector of

traits consisting of allocation to maintenance, allocation to survival and number of deleterious mutations

the individual has). One life-cycle iteration then proceeds as follows. We start by computing the fecundity

of each adult individual, which is determined by its trait values (eq. (11)). Then, we evaluate the survival

probability of each adult individual according to its trait values (the survival of an individual is given by

a Bernoulli random variable with mean given by its survival probability eq. (11)). After eliminating the
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dead individuals, we fill the “vacated breeding spots” by randomly sampling offspring from the relative

fecundity of all adult individuals before survival, thus effectively implementing a Wright-Fisher process

for reproduction (Mode and Gallop, 2008). Once a newborn is chosen to fill the breeding spot, each

of its traits mutate independently with probability (µLH = 0.01 in our actual simulations). The effect

size of a mutation follows a Normal distribution with zero mean and a standard deviation (=0.02 in our

simulations). Finally, we allow for deleterious mutations to accumulate at the deleterious mutation locus

according to a Poisson distribution with mean that depends on the life-history locus (as specified by

eq. (11)). To obtain the results shown in 2, we initialised the simulation with a monomorphic population,

with no deleterious mutations and life-history trait values given by the analytically predicted equilibrium.

In Fig. 3 we demonstrate the convergence stability of our simulations and we started the simulations away

from the equilibrium for four different initial values of the traits.

The simulation algorithm for the “Coevolution of age of maturity and germline maintenance” scenario

(see section 2.3. of S.I for the Mathematica code) follows a population whose size is endogenously

determined according to a continuous-time stochastic updating process using the so-called “thinning”

algorithm described in Section 3.1 of Ferriere and Tran (2009), which allows to exactly implement our

life-cycle assumptions. A thinning algorithm is essentially an algorithm to simulate the points in an

inhomogeneous Poisson process (inhomogeneous Poisson processes can be simulated by “thinning” the

points from the homogeneous Poisson process), where the points or events take place sequentially (see e.g.

Chen, 2016 for a conceptual description). Hence, under this algorithm, each individual is described by a

vector specifying its age, allocation to repair, the age at maturity, and the number of deleterious mutations

the individual has. The events in the thinning algorithm then follow a Poisson point process whose mean

is determined by the vital rates (eq. (22)) and where the occurrence of the events depends on the relative

weights set by birth, death, and mutation rates of an individual. We defined as a “generation” N(u∗)

iterations of the thinning algorithm, where N(u∗) is the analytical prediction of the carrying capacity of

the model. This is so because during one iteration of the thinning algorithm, a maximum of one event

can occur (birth, death, or mutation of an individual) to one randomly chosen individual and so after

having iterated the process N(u∗) times, on average the total population has been sampled. Thus, in

order to produce a single data point in Fig. 4, we ran the six million(=N(u∗)×Ngenerations ≈ 2000×3000)

iterations of the thinning algorithm. The mutation rate in the life-history locus is set to µLH = 0.1 and the

effect size of the mutation follows a Normal distribution with zero mean and a standard deviation (=0.07

in our simulations). Simulating the results shown in 4, we initialised the simulation with a monomorphic

population, where individual age is given by a = 1/db (recall, that db is the baseline mortality, with

no deleterious mutations and life-history trait values given by the analytically predicted equilibrium. In

Fig. 5 we demonstrate the convergence stability of our simulations and we started the simulations away

from equilibrium for four different initial values of the traits.
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André, J.-B., and B. Godelle. 2006. The evolution of mutation rate in finite asexual populations. Genetics
172:611–626.

Avila, P., L. Fromhage, and L. Lehmann. 2019. Sex-allocation conflict and sexual selection throughout
the lifespan of eusocial colonies. Evolution 73:1116–1132.

Avila, P., T. Priklopil, and L. Lehmann. 2021. Hamilton’s rule, gradual evolution, and the optimal
(feedback) control of phenotypically plastic traits. J. Theor. Biol. 526:110602.

Baumdicker, F., E. Sester-Huss, and P. Pfaffelhuber. 2020. Modifiers of mutation rate in selectively
fluctuating environments. Stoch. Process. Their. Appl. 130:6843–6862.

Bürger, R. 2000. The Mathematical Theory of Selection, Recombination, and Mutation. John Wiley and
Sons, New York.

Case, T. J. 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press, Oxford.

Caswell, H. 2000. Matrix Population Models. Sinauer Associates, Massachusetts.

Charlesworth, B. 1990. Optimization models, quantitative genetics, and mutation. Evolution 44:520–538.

———. 1994. Evolution in Age-Structured Populations. 2nd ed. Cambridge University Press, Cambridge.

Charnov, E. L. 1993. Life history invariants: some explorations of symmetry in evolutionary ecology.
Oxford University Press, New York.

Chen, H.-y., C. Jolly, K. Bublys, D. Marcu, and S. Immler. 2020. Trade-off between somatic and germline
repair in a vertebrate supports the expensive germ line hypothesis. Proc. Natl. Acad. Sci. U.S.A.
117:8973–8979.

Chen, Y. 2016. Thinning algorithms for simulating point processes. Florida State University, Tallahassee,
FL .

Cichon, M., and J. Kozlowski. 2000. Ageing and typical survivorship curves result from optimal resource
allocation. Evol. Ecol. Research 2:857–870.
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Figure 1: Key components of the life-history model with mutation accumulation. An individual’s geno-
type is characterised by a life-history locus Lu and a deleterious mutation locus (purple rectangle) Lnm

.
The mutation rate at the life-history locus µLH is considered to be fixed, while the mutation rate µ at
the deleterious mutation locus depends on the life-history trait u and is evolving. Individuals can be
characterised by the life-history allocation trajectory u = {u(a)}a∈T (life-history trait) and the number
nm = {nm(a)}a∈T of deleterious mutations accumulated in the germline throughout lifespan. The re-
source allocation trait captures two different types of trade-offs: (i) between immutability vs life-history
and (ii) between different life-history functions themselves (”classic” life history trade-offs, e.g. Stearns,
1992; Roff, 2008). Hence, the life-history locus affects the vital rates and thus fitness directly via resource
allocation to life-history functions and indirectly through allocation to germline maintenance since vital
rates depend on the number of deleterious mutations. For the invasion analysis we use the basic repro-
ductive number of the least-loaded class R̃0 as a fitness proxy (eqs. 6 and 9 as detailed in section 2.3).
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Table 1: List of key symbols of the general model.

Key symbols of the model

a Individual age; age a can take either discrete (a ∈ {0, 1, 2, ...}) or continuous
(a ∈ [0,∞]) values over all possible age classes T (e.g. T = [0,∞] in many con-
tinuous age life-history models, as maximum age is often not a fixed number).

u(a) Individual life-history trait expressed at age a (e.g. proportional allocation
fecundity, survival, germline maintenance); formally, u : T → Rn

u = {u(a)}a∈T Full life-history schedule over all age classes (e.g. proportional allocation of
resources to fecundity from birth to death); formally, u ∈ U[T], where U[T]
is a set of all admissible life-history schedules; namely, a set of discrete or
continuous real-valued functions over domain T.

nm(a) Number of deleterious mutations at age a in the locus where deleterious mu-
tations can accumulate; formally, nm : T → N. Since we assume asexual
reproduction, the genetic details of the locus for trait nm(a) is irrelevant (i.e.
it may consist of many underlying loci).

nm = {nm(a)}a∈T. Profile of deleterious mutations across all age classes; formally, nm ∈ N[T] is
an element of the space N[T] of all possible discrete functions of range N over
domain T.

p(v) Equilibrium probability distribution for the number of deleterious mutations in
the resident population carried by individuals across the different age-classes,
formally p(v) ∈ ∆(N × T), where ∆(A) is the set of probability measure over
set A.

ρ0(u,v) Invasion fitness (per-capita growth rate)of zero-class individuals with mutant
allele u in the population resident to trait v; if the least-loaded class dominates
the population.

R̃0(u,v) Basic reproductive number of the least-loaded class, i.e. the expected number
of offspring with zero deleterious mutations produced by an individual with
zero deleterious mutations

b̃0(a,u,v) Effective number of newborns with zero mutations produced by zero-class mu-
tant individuals age a in a resident population (discrete time model); effective
birth rate of newborns with zero mutations of zero class mutant individual of
age a in a resident population (continuous time model).

d0(a,u,v) Death rate of zero-class mutant individual at age a in the resident population

l̃0(a,u,v) Probability of survival of a mutant zero-class individual to age a in a resident
population.

µf(a,u,v) Rate at which germline mutations appear in an offspring when giving birth at
age a.

µs(a,u,v) Rate at which germline mutations appear in an individual at age a.
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Table 2: List of key symbols of “Coevolution of reproductive effort and the mutation rate model” .

Symbols for “Coevolution of reproductive effort and the mutation rate”.

ug, vg Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

us, vs Proportional allocation of resources to survival of mutant and resident individ-
ual, respectively.

N Total population size; exogeneously fixed (N = 7500 in simulations).

fb, sb Baseline (maximal) fecundity and probability of survival, respectively (fb = 5,
sb = 0.5 ).

µ(u) = µs(u) =
µf(u)

Rate at which germline mutations appear in an offspring when giving birth and
when surviving from generation to the next.

µb Baseline mutation rate at which germline mutations appear; mutation rate,
when no resources are allocated into germline maintenance.

αf, αs Scaling factors of investing resources into fecundity and survival, respectively;
analytical results obtained for αf = αs = α (α = 0.02, α = 0.1, α = 0.2 in
simulations).

αµ Scaling factor of investing resources into germline maintenance. (αµ = 2).
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(b) Uninvadable investment into survival u∗
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(c) Uninvadable mutation rate µ(u∗).
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(d) The mean number of novel mutations λ(u∗).

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Baseline mutation rate, μb

T
h
e
m
e
a
n
n
u
m
b
e
r
o
f
n
o
v
e
l
m
u
ta
ti
o
n
s,
λ
(u

*
)

Figure 2: Predictions from the analytical model (solid lines) and from individual-based simulations of a
finite population (circles) for the uninvadable life-history strategies u∗ = (u∗

g, u
∗
s ) (panel a and b) and the

mean number of novel mutations λ(u∗) (panel c) as functions of baseline mutation rate µb. The solution
for the individual-based simulations are obtained as time-averages measured over 7500 generations while
starting the simulation at the analytically predicted equilibrium (see Appendix B for details about the
simulations and S.I. for the simulation code). The different colours represent different values of scaling
factor α of reproduction and survival (smaller values of α corresponding to more strongly diminishing
returns from investment into vital rates). Parameter values: fb = 5, αµ = 2, sb = 0.5, σ = σf = σs = 0.2;
for simulations: N = 7500, fb = 5, sb = 0.5.
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Figure 3: Evolutionary convergence towards the uninvadable life-history strategy u∗ = (u∗
g, u

∗
s ) ≈

(0.50, 0.40) (grey circle). The arrows give the analytic direction of selection at any population state
(eqs. 18 and 19) and the colourful jagged lines represent the evolution of population average trait values
over evolutionary time in simulations (from initial time, up to 3000 generations). Simulation were started
from four different initial conditions: (i) vg = 0.1, vs = 0.1, (ii) vg = 0.1, vs = 0.7, (iii) vg = 0.7, vs = 0.1,
and (iv) vg = 0.7, vs = 0.7. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3000
generations. Parameter values: fb = 5, αµ = 2, sb = 0.5, σ = σf = σs = 0.2; for simulations: N = 6000,
fb = 5, sb = 0.5.
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Table 3: List of key symbols of “Coevolution of age at maturity and germline maintenance model”.

Symbols for “Coevolution of age at maturity and germline maintenance model”.

ug, vg Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

um, vm Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

N(v) Total population size; endogeneously determined and thus depends on the res-
ident trait v.

x(t) Body size of a mutant individual at age t.

xm(u) Body size of a mutant individual at maturity.

B(xm(u)) Surplus energy rate, i.e., rate of energy available to be allocated to life-history
functions; we assume that the surplus energy scales as the power with size, i.e.
energy available to mature individuals is B(xm(u)) = axm(u)

c.

µf Rate at which germline mutations appear in an offspring when giving birth
(fixed parameter, µf = 0 in simulations).

µs(ug) ≡ µ(ug) Rate at which germline mutations appear in a mutant individual over time
(independent of age).

µb Baseline mutation rate at which germline mutations appear; mutation rate,
when no resources are allocated into germline maintenance.

db Baseline death rate.
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(a) Uninvadable investment into maintenance u∗
g.
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(b) Uninvadable switching time u∗
m.
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(c) Population size N(u∗).
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(d) Uninvadable mutation rate µ(u∗
g).
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Figure 4: Predictions from the analytical model (solid lines) and from individual-based simulations (circles
obtained as averages) for uninvadable life-history strategies u∗ = (u∗

m, u
∗
g) (panel a and b), population

size N(u∗) (panel c) and mutation rate µ(u∗
g) as functions of baseline mutation rate µb for different values

of baseline mortality db (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - orange). The dashed lines
represent the “classical life-history” prediction (i.e. when µ(u∗

g) → 0 and u∗
g → 0), where the colours of the

dashed represent the different values for baseline death rate db parameter and match the values of solid
lines (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - orange). The solution for the individual-based
simulations are obtained as time-averages measured over 3000 ”generations” while starting the simulation
at analytically predicted equilibrium for the trait values and population size (see S.I. section 2.3 for the
code and for more details). The different colours represent different values of baseline mortality rate db.
Parameter values: σ = σb = σd = 0.2, x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0.
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Figure 5: Evolutionary convergence to the uninvadable life-history strategy u∗ = (u∗
g, u

∗
m) ≈ (0.41, 11.6)

(grey circle). The arrows give the direction of selection at any resident population state (eqs. 29 and
30) and the colourful jagged lines represent the evolution of the population average trait values over
evolutionary time in simulations (from initial time, up to 3500 generations). Simulation were started
from four different initial conditions: (i) vg = 0.1, vs = 0.1, (ii) vg = 0.1, vs = 0.7, (iii) vg = 0.7, vs = 0.1,
and (iv) vg = 0.7, vs = 0.7. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3500
generations. Parameter values: σ = σb = σd = 0.2, x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0,
db = 0.1250.

37

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.05.11.491530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491530
http://creativecommons.org/licenses/by-nc/4.0/


(a) Body size at maturity xm(u∗).
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(b) Effective birth rate b0(u
∗,u∗).
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Figure 6: Predictions from the analytical model for the body size at maturity xm(u
∗) and the effective

birth rate b0(u
∗,u∗) at the uninvadable population state as a function of baseline mutation rate for

different values of mortality rate db (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - black). The
dashed lines represent the “classical life-history” prediction (i.e. when µ(u∗

g) → 0 and u∗
g → 0), where

the colours of the dashed represent the different values for db parameter and match the values of solid
lines (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - black). Parameter values: σ = σb = σd = 0.2,
x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0.
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