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Abstract

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mu-
tation rate and investing into life-history functions. Life-history and the mutation rate therefore
coevolve, but this joint evolutionary process is not well understood. Here, we develop a mathe-
matical model to analyse the long-term evolution of individual resource allocation traits affecting
life-history and the deleterious mutation rate. We show that the invasion fitness of alleles controlling
allocation to life-history functions and mutation rate reduction can be approximated by the basic
reproductive number of the least-loaded class, which is the expected lifetime production of offspring
without deleterious mutations born to individuals with no deleterious mutations. Second, we analyse
two specific biological scenarios: (i) coevolution between reproductive effort and germline mainte-
nance and (ii) coevolution between age at maturity and germline maintenance. This provides two
broad biological predictions. First, resource allocation to germline maintenance, at the expense of
allocation to survival and reproduction, tends to increase as external causes of mutation rate increase
(e.g. environmental stress, oxygen levels) and to tilt allocation towards reproduction instead of sur-
vival. Second, when such external causes increase, life-histories tend to be faster with individuals

having shorter life spans and smaller body sizes at maturity.
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1 Introduction

Maintaining and accurately transmitting genetically encoded information is central for every living or-
ganism. Mutations induce errors in the processing of genetic information and their effects on fitness are
generally (mildly) deleterious (Eyre-Walker and Keightley, 2007). Therefore, it is likely that selection
primarily favours a reduction of the mutation rate of organisms (Sniegowski et al., 2000). Yet, investing
resources into germline maintenance is physiologically costly (Kirkwood, 1986; Maklakov and Immler,
2016; Monaghan and Metcalfe, 2019; Chen et al., 2020). Therefore, the balance between selection against
deleterious mutations driving for lower mutation rates and selection for reduced physiological cost in-
creasing mutation rates are expected to lead to a positive evolutionary equilibrium rate of mutation.
This argument has been formalised in a number of classical population genetic models assuming semel-
parous reproduction (e.g. Kimura, 1967; Kondrashov, 1995; Dawson, 1998, 1999; Johnson, 1999; André
and Godelle, 2006; Gervais and Roze, 2017) as well as age-structured populations (Lesaffre, 2021) to
show that evolution indeed favours a positive evolutionary stable mutation rate. These studies emphasise
the role of physiological cost of germline fidelity in explaining the patterns of mutation rates, but do
not connect the cost of germline fidelity explicitly to life-history evolution, which depends on underlying
physiological trade-offs.

Indeed, a central premise made in life-history theory is that life-history trade-offs are mediated through
allocation of resources to different life-history functions, such as growth, reproduction, and maintenance
of soma, or information gathering and processing (Stearns, 1992; Roff, 2008). Since germline maintenance
takes a toll on available resources, mutation rate evolution and life-history evolution are tied together
through a resource allocation trade-off. This implies that the rate of deleterious mutations should co-
evolve with life-history and affects various life-history traits, such as reproductive effort, age-at-maturity,
adult body size, and expected lifespan. Yet the bulk of models about the evolution of mutation rates,
which often go under the heading of modifier models, consider physiologically neutral mutation rate
(e.g. Leigh, 1970; Gillespie, 1981; Holsinger and Feldman, 1983; Liberman and Feldman, 1986; Gerrish
et al., 2007; Altenberg et al., 2017; Baumdicker et al., 2020). And while the effect of fixed mutation rate
on life-history trade-offs have been studied before (e.g. Charlesworth, 1990; Darko et al., 2012), these
models suggest that a relatively high level of mutation rates is needed for mutation accumulation to alter
life-history trade-offs. This led to the conclusion that mutation accumulation is a minor force in shaping
life-history traits (Dariko et al., 2012). But these studies view mutation rates as fixed traits acting only
as a hindrance for adaptive life-history evolution. Hence, no study has yet investigated the joint adaptive
coevolution of both deleterious mutation rates and general life-histories in age-structured populations.

The aim of this paper is to start to fill this gap by formally extending evolutionary invasion analysis—
“ESS” theory—(e.g., Maynard Smith, 1982; Eshel and Feldman, 1984; Metz et al., 1992; Charlesworth,
1994), which has been sometimes implicitly yet routinely applied to life-history evolution (e.g., Ledn,

1976; Michod, 1979; Schaffer, 1982; Iwasa and Roughgarden, 1984; Stearns, 1992; Perrin, 1992; Perrin
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and Sibly, 1993; Cichon and Kozlowski, 2000; Iwasa, 2000; Day and Taylor, 2000), to the case where
life-history trait(s) evolving by selection also control the rate of deleterious mutations. This covers
the situation where life-history resource allocation schedules evolve on a background where deleterious
mutation accumulation can occur. Our formalisation thus aims at integrating both the standard theories
of life-history evolution and deleterious mutation accumulation for direct selection on the mutation rate.

The rest of this paper is organised into two parts. First, we characterise the invasion process of a
mutant life-history trait affecting the load of deleterious mutations accumulation in an age-structured pop-
ulation. We show that ascertaining the joint evolutionary stability of life-history schedules and mutation
rates of deleterious mutations is usually complicated, but under certain biologically feasible conditions; in
particular, when the zero mutation class (least-loaded class) dominates the population in frequency, evo-
lutionary stability can be ascertained from the basic reproductive number of the least-loaded class alone
(expected lifetime production of offspring with no mutations born to individuals with no mutations).
Second, we analyse and solve two concrete biological scenarios: (i) coevolution between reproductive
effort and germline maintenance, where individuals face a trade-off between allocating resources to sur-
vival, reproduction and germline maintenance and (ii) coevolution between age-at-maturity and germline
maintenance, where individuals face a trade-off between allocating resources to growth, reproduction and
germline maintenance. These scenarios allow us to illustrate how our model can be applied to anal-
yse questions in life-history and mutation rate evolution and provide predictions about how life-history
and the mutation rate coevolves. It also allows us to verify that the analysis based on using the basic
reproductive number of the least-loaded class as an invasion fitness proxy matches with results from

individual-based stochastic simulations.

2 Model

2.1 Main biological assumptions

We consider a panmictic population of haploid individuals reproducing asexually. The population size
is assumed to be large and regulated by density-dependent competition. Individuals in the population
are structured into age classes and each individual undergoes birth, possibly development, reproduction,
and death. An individual of age a, which is either a discrete or continuous number, is characterised to
be of type 6(a) = (u(a),nm(a)), which consists of two genetically determined components (see Table 1
for a list of symbols and more formalities). The first component, u(a), is the individual’s life-history
trait expressed at age a; namely, a resource allocation decision at age a to different life-history functions
(e.g. growth, reproduction, or somatic maintenance, see e.g. Stearns, 1992; Perrin, 1992; Perrin and
Sibly, 1993; Day and Taylor, 2000). We denote by u = {u(a)}.es the whole life-history schedule or
a path over all possible age classes T an individual can be in (formally, w € U[T], where U[T] is the
set of all admissible life-history schedules). The second component, n.,(a), represents the number of

deleterious germline mutations an individual at age a carries. Hence, ny,(a) can be thought of as the load
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of deleterious mutations as considered in classical population genetic models of mutation accumulation
(e.g., Kimura and Maruyama, 1966; Haigh, 1978; Dawson, 1999; Biirger, 2000), but here extended to an
age-structured model (see also Steinsaltz et al., 2005 for aged-structured mutation accumulation model).
As such, ny, = {nm(a)}.cq represents the profile of deleterious mutations across lifespan.

We envision that the genotype determining the type 8 = (u,ny,) of an individual consists of two
separate positions (or loci) that are necessarily linked under asexual reproduction, one locus determining
u and the other n,, (see Fig. 1). The mutation rate at the life-history trait w locus is assumed to be
fixed and is thus exogenously given. However, this trait is assumed to control allocation to germline
maintenance and other life-history functions, and thus to control the mutation rate at the locus where
the n,, deleterious mutations accumulate whose number are thus endogenously determined (Fig. 1).

We assume that the effective number of births b(a) and the death d(a) of an individual of age a
can depend on both the number of deleterious mutations n,,(a) at age a and the life-history schedule
u. The life history schedule w thus not only affects the vital rates, as usually assumed in life-history
theory, but also the rate of deleterious mutation accumulation (see also Fig. 1). The vital rates may
further depend on properties of the population, such as age class densities and allele frequencies, but we
leave this dependence implicit for now. We note that when measured on an exponential scale, the death
and mutation rates define a survival probability exp(—d(a)) and an immutability probability exp(—pu(a))
(probability that no mutations occur in an individual of age a). Note that for a discrete time process the
birth function b(a) gives the expected number of offspring produced by an individual of age a, while for
a continuous time process b(a) is defined as the rate at which an individual produces a single offspring.

Finally, we make the following mutational monotonicity assumption, which will be central in our analysis.

1. Mutations at the locus determining n,, can only be deleterious or neutral. The effective birth rate
bi(a), survival probability exp(—d;(a)), and immutability probability exp(—u;(a)) of an individual
at age a with ny(a) = ¢ mutations are non-increasing functions of the number of mutations.

Formally, bi(a) > bit1(a), di(a) > dit1(a), and pi(a) = piti(a).

2. Mutations can only accumulate within an individual. There are no back mutations and an individual

with ¢ mutations can only mutate towards having ¢ + 1 mutations.

We are concerned in this paper with formalising selection at the life-history locus. Namely, the
objective of our analysis is to develop a tractable evolutionary invasion analysis to evaluate candidate

evolutionary stable life-history trait v* € U[T] that will be favoured by long-term evolution.

2.2 Invasion analysis for life-history with mutation accumulation

2.2.1 Invasion analysis

Evolutionary invasion analysis (e.g., Eshel and Feldman, 1984; Parker and Maynard Smith, 1990; Metz
et al., 1992; Charlesworth, 1994; Ferriere and Gatto, 1995; Eshel, 1996; Otto and Day, 2007; Mullon

et al., 2016) could be applied straightforwardly to our model in the absence of deleterious mutations as
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follows. Mutations at the life-history trait are postulated to be very rare so that one can focus on the
invasion fitness p(u,v) of a mutant trait w introduced at low frequency in a population monomorphic
for some resident life-history trait v that has reached its equilibrium. The invasion fitness is the per
capita number of mutant copies produced per unit time by the mutant lineage descending from the initial
mutation, when the mutant reproductive process has reached a stationary state distribution (over ages
and the number of deleterious mutations) in a resident population and the mutant remains overall rare
(i.e. geometric growth ratio of the mutant). Traits that are resistant to invasion define candidate end-
points of evolution and are found by maximising the invasion fitness of the mutant holding the resident
at the uninvadable population state. In others words, an uninvadable trait u* is a best response to itself;

namely

u* € arg urélg[)é] plu,u*), (1)
so that in the resident population state u*, no mutant trait deviation can increase invasion fitness.

To be a meaningful endpoint of evolution, an uninvadable trait needs to be an attractor of the
evolutionary dynamics and thus be convergence stable (Eshel and Motro, 1988; Geritz et al., 1998; Leimar,
2009). When mutant and resident traits are sufficiently close to each other so that selection is weak, the
gradient of invasion fitness—the selection gradient—is sufficient to determine whether a given mutant can,
not only invade the resident population, but also become fixed in it (the so-called “invasion implies
substitution” principle applying to the present and more complex demographic scenarios, Rousset, 2004;
Priklopil and Lehmann, 2021). As a result, invasion fitness alone under weak phenotypic deviations allows
to determine whether gradual evolution under the constant influx of mutations will drive a population
towards the uninvadable trait. An evolutionary invasion analysis thus generally consists in both using
invasion fitness to (i) characterise uninvadable traits (ii) and to determine whether these are attractors of
the evolutionary dynamics, thus allowing to make definite statements about co-evolutionary dynamics.
A useful summary of (co)-evolutionary adaptive dynamics concepts can be found in Geritz et al. (1998)
and individual-based stochastic simulations have repeatedly validated the conclusions of this approach in
genetic explicit contexts (e.g., Mullon et al., 2018; Mullon and Lehmann, 2019, see also Otto and Day,
2007; Dercole and Rinaldi, 2008 for textbook discussions).

This procedure to characterise stable and attainable life histories has been in use more or less explicitly
in standard life-history theory for decades (e.g., Leén, 1976; Michod, 1979; Schaffer, 1982; Iwasa and
Roughgarden, 1984; Perrin, 1992; Perrin and Sibly, 1993; Charlesworth, 1994; Day and Taylor, 2000;
Cichon and Kozlowski, 2000; Iwasa, 2000; Irie and Iwasa, 2005; Metz et al., 2016; Avila et al., 2019).
We now push forward this approach into the realm where life-history evolution interacts with mutation
accumulation and thus relax the standard life-history theory assumption that the rate of deleterious
mutations is zero. For this case, we still assume that mutations at the life-history locus are rare enough
so that whenever a mutant trait w arises, it does so in a resident population monomorphic for some

resident life-history trait v. But owing to the occurrence of deleterious mutations, the resident population
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will be polymorphic for the number of deleterious mutations, and this polymorphism will depend on wv.
The resident population is then assumed to have reached a mutation-selection equilibrium for deleterious
mutations and the resident trait v thus determines a resident probability distribution p(v) over the
different number of deleterious mutations carried by individuals across the different age-classes. This
assumption is nothing else than the usual assumption of the internal stability of the resident population
used in invasion analysis (see e.g. Altenberg et al., 2017; Eshel and Feldman, 1984; Metz et al., 1992).
Here, it entails that the resident population has reached an equilibrium for both demographic and genetic
processes.

In the absence of age-classes, p(v) is the equilibrium probability distribution for the number of
deleterious mutations in standard selection-mutation balance models (see Biirger, 2000 for a general
treatment and where the sample space of p(v) reduces to N). For instance, when the number of novel
(deleterious) mutations follows a Poisson distribution with mean rate p and each additional mutation
decreases baseline fecundity by a constant multiplicative factor o in a semelparous population, then
p(v) is Poisson distributed with mean p/o (Haigh, 1978, Biirger, 2000, p. 300). This holds in an age-
structured population across age-classes under certain but limited number of conditions (Steinsaltz et al.,

2005). More generally, p(v) will depend on the details of the model.

2.2.2 Invasion process with mutation accumulation

Since the mutant trait w can arise in individuals carrying different numbers of deleterious mutations,
the invasion process of u is contingent on the genetic background in which it arises, and we refer to
the initial carrier of the u trait as the progenitor (or ancestor) of w. The invasion fitness of u is then
determined by the size of the lineage of the progenitor, which consists of all of its descendants carrying
u far into the future. Namely, the immediate descendants of the progenitor including the surviving
self, the immediate descendants of the immediate descendants, etc., covering the whole family history
tree ad infinitum. Crucially, descendants may accumulate deleterious mutations during the process of
initial growth or extinction of the mutant lineage when this lineage is rare (referred to throughout as the
“invasion process”). As such, the invasion process, whether it occurs in continuous or discrete time, can
be regarded as a multitype age-dependent branching process (Mode, 1968, 1971) since during growth or
extinction, novel genotypes are produced by mutation. To analyse this process, it is useful to organise
individuals into equivalence classes. The defining feature of an equivalence class is that it is a collection
of states of a process among which transitions eventually occur, so the states are said to communicate
(Karlin and Taylor, 1975, p. 60). The equivalence class €; will stand for all mutant individuals carrying
1 deleterious mutations and thus consist of individuals of all age classes. This is an equivalence class
because through survival and reproduction, an individual of any age with ¢ mutations may eventually
transition to become an individual of any other age (in the absence of menopause). This follows from
the fact that the process of survival and reproduction in an age-structured population in the absence of

mutations (and menopause) is irreducible (Caswell, 2000). Indeed, starting in any age-class, eventually
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every age-class can be reached. Owing to the mutational monotonicity assumption, however, starting
in a given class, it is possible to enter another class, but not transition back from that class (otherwise
the two classes would form a single class). The mutant population process is thus overall reducible and
can be regarded as a reducible multitype age-dependent branching process (Nair and Mode, 1971; Mode,
1971). We say that equivalence class C; 1 follows class C; since individuals in equivalence class i can only
transition to class ¢ + 1 by acquiring mutations.

To see why the notion of equivalence class is useful to understand the invasion process, let us focus
on a discrete time process with discrete age classes; namely, T = {0,1,2,...,T} and denote by n;(t) the
expected number of individuals at time ¢ in class €; that descend from a single class €; newborn ancestor
born t time-units ago (i.e. n;(0) = 1). Then, accounting for all the descendants of the progenitor

(including the surviving self) entails that n;(t) satisfies the renewal equation
ni(t) = L) + > ni(t — a)bi(a)li(a), (2)

where l~¢(a) is the probability that a C; class newborn survives to age a and has not acquired any new
mutations (we assume that ;(a) — 0 as a — 0o, since death or mutation must eventually occur). The
quantity INJi(a) is the expected number of (newborn) offspring without new mutations produced by an
individual of age a that carries ¢ deleterious mutations. Hence, the first term on the right-hand-side of
eq. (2) accounts for the survival and immutability of the ancestor itself until age ¢. The second term
projects the expected number of individuals without mutations descending from the progenitor at ¢t — a
(and for all a < t) into new lineage members without mutation at ¢. Together, these two terms thus give
the total lineage size of the progenitor and a key feature of eq. (2) is that it depends only on the vital rates
and states of individuals of class C;. As such, eq. (2) is functionally equivalent to the standard renewal
equation of population dynamics in discrete age-structured populations (Charlesworth, 1994, eq. 1.34).
It then follows from standard results (e.g., Charlesworth, 1994, p. 25-26) that asymptotically, as t — oo,

the number n;(t) grows geometrically as
ni(t) ~ p; Ki, (3)

where K; is a constant depending on the process and p; is the unique root satisfying the characteristic
(or Euler-Lotka) equation ZZ:O p; %li(a)bi(a) = 1.

Since individuals of class i contribute to individuals of class i + 1 through mutations (the equivalence
class C; 41 follows class €;), then n;(t) does not describe the total expected lineage size of the progenitor.
However, owing to the mutational monotonicity assumption, the growth ratio p; is at least as large as
Pit1, i.€., p; > pi+1 for all . This implies that when the ancestor is of type ¢, the expected lineage size
is determined by the growth ratio p;, since it dominates that of any other following equivalence class.
Hence, asymptotically, the total expected lineage of an C; class progenitor has geometric growth ratio p;.

It further follows from the theory of multitype age-dependent branching processes that the realised lineage


https://doi.org/10.1101/2022.05.11.491530
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491530; this version posted October 29, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

size of a single progenitor (a random variable) has growth ratio p; if p; > 1 and otherwise, if p; < 1, the
lineage goes extinct with probability one (Mode, 1971, Theorem 7.2 p. 245, Corrolary 6.1 p. 280, see also
Mode, 1968 for the single type case). Further, p; < 1 if (and only if) R; < 1, where R; = Zf:o li(a)b;(a)
is the expected number of offspring of the progenitor produced throughout its lifespan (i.e. Mode, 1971,
Theorem 7.2 p. 245, Corrolary 6.1 p. 280, see also Karlin and Taylor, 1981, p. 424, Caswell, 2000). Hence,
p; is an appropriate measure of invasion fitness and R; is an appropriate proxy of it, for a type ¢ mutant
u arising in an resident v background (for a discussion of various biological representations of invasion
fitness and proxies thereof see Lehmann et al., 2016). The same argument can be made for continuous
time processes, in which case p; = exp (r;), where r; is the rate of natural increase of the lineage size of

a progenitor of type i, i.e., the Malthusian growth rate (see Appendix A).

2.3 Uninvadability for dominating least loaded class

The key feature of the invasion process in a population with distinct mutational equivalence classes is that
the invasion of a mutant depends on the class in which it appears (p; for class ¢), which in turn depends
on the distribution p(v). This means that there are as many growth rates as equivalence classes, since
the invasion process is reducible (see also Altenberg, 2009, p. 1278). Therefore characterising long-term
evolution using a single representation of invasion fitness (or proxy thereof) is at first glance unattainable
under our modelling assumptions. Yet, as a first-step, it also seems reasonable to consider a situation
where the mutation-selection process is such that the least-loaded class €y dominates the population in
frequency (i.e. the frequency of the zero-class individuals is close to one). If selection is stronger than
mutation, then deleterious alleles will tend to be purged and the mutation-selection balance will be far
away from the error threshold of mutation accumulation or meltdown of asexual populations (e.g., Eigen,
1971; Lynch et al., 1993; Szathmary and Maynard Smith, 1997). For instance, in the classical mutation-
selection equilibrium model mentioned in section 2.2.1 (Haigh, 1978, Biirger, 2000), the frequency of the
zero mutation class is e */?. So when pu < ¢, say for definiteness the selection coefficient is one order
of magnitude larger than the mutation rate (e.g. for g = 0.01 and o = 0.1, /o = 0.1), then the least
loaded class dominates in frequency (e /7 = 0.9). Under these conditions, the click rate of Muller’s
ratchet (Muller’s ratchet is said to click when the class of individuals with the least amount of deleterious
mutations in the population becomes extinct) is small for finite but sufficiently large population sizes.
For instance, in a population of size N = 1000, the click rate is 8.4 x 10734 (obtained from 1/7 where
7 =0\/2nN/pxexp (N (0 —p(1—1log (%))))/(cr—,u)2 is the inverse of the click rate, see eq. 23 Metzger
and Eule, 2013, where 0 = s and p = u). Hence, the click rate of Muller’s ratchet can be considered
negligible compared to the scale of mutation rates. Thus, whenever the selection coefficient is one order
of magnitude larger than the mutation rate, whenever a mutant life-history trait w appears in a resident
v population, it is likely to arise on a zero mutation background (i.e. in class Cy individuals).
Endorsing the assumption that the least-loaded class dominates in frequency then allows to charac-

terise the fate of mutant w appearing in a resident v population (recall eq. 1) directly from the growth
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ratio

p(ua U) = Po (uv 'U)7 (4)

of the least-loaded class. Further, since po(u,v) <1 <= Ro(u,v) < 1, where Ro(u,v) is the basic
reproductive number of the least-loaded class, i.e. the expected number of class Cy offspring produced
by a class individual Cy individual over its lifespan, is sufficient to characterise the fate of the mutant. It
then follows that an uninvadable strategy w* can be characterised in a discrete age-structured population

as

u' € arg max, Ro(u, u*), (5)

which entails maximising (in the best response sense) the basic reproductive number of the least-loaded
class. Likewise, multi-dimensional convergence stability (Lessard, 1990; Leimar, 2009) can be assessed

from Ro(w,w*). And this reproductive number is given explicitly in terms of vital rates by

T
RO(U,'U) = ZZ;O(a,uav)ZO(avuav)a (6)
a=0
where
EO(avuav) = bO(aauvv) X €xXp (—uf(a,u,v)) (7)

and

lo(a,u,v) = lo(a, u,v) xexp< Zustuv> with lp(a,u,v) = Hsotuv (8)

Here, by(a,u,v) is the effective fecundity of an individual of age a who has no mutations, sg(a,u,v) =
exp (—dp(a,u,v)) is the probability that such an individual survives over the age interval [a,a + 1] (and
do(a, u,v) is its death rate), and ly(a, u, v) is the probability of survival to age a. In egs. (7)—(8), we have
distinguished between the mutation rate during reproduction p¢(a,w,v), which is the rate of mutations
in newborn offspring while the parent giving birth is of age a, and the mutation rate during lifespan
ts(a, w,v), which is the rate of germline mutations in an organism of age a. Note that the vital rates
bo(a,u,v) and sg(a, u,v) depend on the resident population and can thus be possibly affected by density-
dependent regulation. When p¢(a, u,v) = ps(a,u,v) = 0 for all a € T, eq. (6) reduces to the standard
basic reproductive number for age-structured populations (e.g. Charlesworth, 1994). We emphasise that
we allowed for fecundity, survival and mutation rate to be dependent on the whole life history schedule
because the evolving traits may affect physiological state variables (e.g. body size). As long as there is a

direct correspondence between age and physiological state (see e.g. the discussion in de Roos, 1997), then
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the extension of current formalisation to physiologically-structured populations is direct (see also section
3.2 for an example). Furthermore, individuals can also be affected by the (physiological) state variables
of other individuals (e.g. size-dependent competition) and hence our formulation implicitly covers these
situations and frequency- and density-dependent interactions more generally.

For a continuous time process with a continuous age structure (T = [0,7]), we show in Appendix A

that the basic reproductive number of the least-loaded class is

T
Ro(u,v):/o bo(a,u,v)ly(a, u,v)da, (9)

where by(a,u,v) takes the same functional form as in eq. (7) but is now interpreted as the effective birth

rate (of offspring with no mutations) at age a, and I(a, u,v) satisfies the differential equation:

diy - -
W - [d() (ta u, ’U) + Ms(tv u, U)] lO(av u, ’U) SubjeCt to l()(07 u, U) =0. (10)

We now make four observations on the use of Ry (u,v) to characterise long-term coevolution for life-
history traits and mutation rates. (1) Because Ro(u, v) depends on the amount of deleterious mutations
in the population solely via v, the distribution p(v) is needed only under frequency-dependent selection.
This makes life-history evolution in the presence of deleterious mutations tractable even if the underlying
evolutionary process of mutation is not (see section eq. 3.2 for an example). The characterisation of
uninvadability using Ro(u,v) (and thus applying eqs. 4-10) generalises the results of Dawson (1998,
p. 148) to overlapping generations and an explicit life-history context (and has been used before in the
study of direct selection on a mutation modifier in semelparous populations see e.g. Leigh, 1970; Dawson,
1999). (2) Because ]:Eo(um) takes the standard form of the basic reproductive number, the results of
optimal control and dynamic game theory can be applied to characterise uninvadability. This is useful
in particular for reaction norm and developmental evolution and formalising different modes of trait
expressions (see Avila et al., 2021). (3) While low mutation rates relative to selection are presumed to
be able to use Ro(u, v) as a proxy for invasion fitness, these mutation rates are endogenously determined
by the uninvadable strategy. It is thus plausible that the uninvadable mutation rate generally entails low
mutation rate. So the assumption of low mutation rate may not appear so drastic and the extent to which
this assumptions is limiting depends on investigating explicit evolutionary scenarios. (4) If deleterious
mutations are such that all the p;’s are proportional to py’s, which is the case for the standard mutation
accumulation models with multiplicative effect of (deleterious) mutations, then using Ry does no rely on
making the assumption of low mutation rates relative to selection, since regardless in which background
the mutation appears, it will grow proportionally to po, and so if R is maximised (in the best response
sense) so will pg.

This gives good reasons to use Ro(u, v) as a proxy of invasion fitness and as such, in the rest of this
paper we consider two scenarios of life-history and mutation accumulation coevolution that we analyse by

using Ro(u,v). This allows us to illustrate the different concepts, demonstrate the usefulness of focusing

10
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on f%o(u, v) to get insights about how life-history evolution interacts with mutation accumulation, and

check results against individual-based stochastic simulations.

3 Examples of life-history and mutation rate coevolution

3.1 Coevolution of reproductive effort and germline maintenance

3.1.1 Biological scenario

Our first scenario considers the evolution of reproductive effort when resources can be allocated to
(germline) maintenance in an iteroparous population. To that end, we assume a population with a
large but fixed number N of individuals undergoing the following discrete time life-cycle. (1) Each of
the IV adult individuals produces a large number of juveniles and either survives or dies independently
of other individuals. Juveniles and surviving adults acquire mutations at the deleterious allele locus at
the same rate. (2) Density-dependent competition occurs among juveniles for the vacated breeding spots
(left by the dead adults) and the population is regulated back to size N.

We postulate that individuals have a static life-history trait consisting of two components u = (ug, us)
(u € U[T] = [0,1]?), which determines how a fixed amount of resources available to each individual is
allocated between three physiological functions: (i) a proportion (1 —ug)(1 —us) of resources is allocated
to reproduction, (ii) a proportion (1 — ug)us of resources is allocated to survival, and (iii) a proportion
ug of resources is allocated to germline maintenance.

We assume that an individual with trait w4 and i deleterious mutations has the following fecundity
fi(u), survival probability s;(u), and mutation rates u¢(u), us(u) (at giving birth and when surviving to

the next generation, respectively),

fi(w) = fo(u) x (1 = or)’
si(u) = so(u) x (1 — 0y)° (11)

() = ps(w) = pr(u) =, (1 —ug)™,

where of and oy are, respectively, the reductions in fecundity and survival from carrying an additional
deleterious mutations (that are assumed to act multiplicatively), i, is the baseline mutation rate (muta-
tion rate when allocation to germline maintenance is at its minimum, uz = 0), and ¢, is the maintenance
scaling factor (a parameter tuning how investing a unit resource into maintenance translates into reducing
the mutation rate). We assume that «, > 1, such that p(u) has decreasing negative slopes in u, and
hence exhibits diminishing returns from investment into germline maintenance.

The quantities fo(u) and so(u) are, respectively the fecundity and survival of the least-loaded class

11
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and they are written as

folw) = fio (1= u) (1 =)™

e (12)
so(u) = sp (us(l - ug)) .

Here, f;, and s, are, respectively, the baseline fecundity and baseline probability of survival; a; and
oy are, respectively, the fecundity and survival scaling factors (parameters tuning how a unit resource
translates into fecundity and survival). We assume that ag, o < 1 whereby both survival and fecundity
have decreasing positive slopes in net amount of resources allocated to them and thus exhibit diminishing
returns. Lower values of a; and ag correspond to more strongly diminishing returns of investing resources
into reproduction and survival, respectively. In the absence of mutation rate, the model reduces to
the standard model of reproductive effort of life-history theory with trade-off between reproduction and
survival (Charnov, 1993; Pen, 2000; Case, 2000). Conversely, with no over-lapping generations and no
life-history evolution, the model reduces to the classical model of mutation accumulation (Haigh, 1978;
Biirger, 2000), and with zero survival and resource allocation evolution, it is equivalent to the asexual
model of Dawson (1998). The model thus combines an unexplored trade-off between life-history traits

(survival and reproduction) and immutability (germline maintenance).

3.1.2 Basic reproductive number

From the model assumptions, we have that the survival of the least-loaded class (eq. 8) reduces to

lo(a, u, v) = so(u)” exp (—p(u)a) (13)
and the effective fecundity of the least-loaded class (eq. 7) can be written as

fo(u)

bo(a, u,v) = by(u,v) = (1 — 5(v)) o)

exp (—p(u)), (14)

bo (u,v)

which depends on the mean survival and fecundity in the population, respectively, 5(v) = Y2 sk(v)pi(v)
and f(v) = Y22, fx(v)pi(v). Here, p;(v) is the probability that an individuals randomly sampled from
the resident population carries i deleterious mutations (and so p(v) = {p;(v)}ien for this model). This
can be understood by noting that (1 — §(v)) is the fraction of open breeding spots available to a juvenile
and the probability that the offspring of a given adult acquires a breeding spot depends on the fecundity
of the adult relative to the population average fecundity (as each juvenile is equally likely to acquire a
breeding spot).

Since there is no fixed end to lifespan under the above life-cycle assumptions (so 7' — o0) and using

12
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eq. (6) along with eqgs. (13)—(14) entails that

- B bo(u,v)
Rolw.v) = Colala)) — sow)

: (15)

(all our mathematical computations can be followed and confirmed via an accompanying Supplementary
Information, S.I. consisting of a Mathematica notebook). Since bg(u,v) is multiplicatively separable
with respect to its arguments then it follows from eq. (15) that the model satisfies the condition of an
optimisation principle (e.g., Metz et al., 2008). Namely, Ro(u,v) = Fy(u)Fy(v) for the functions F (u) =
fo(u)/lexp(p(u)) — so(u)] depending only on the mutant and Fy(v) = [1 —5(v)]/f(v) depending only on
the resident. It follows that maximising F3(u) is sufficient to ascertain uninvadability and uninvadability
implies convergence stability when the evolutionary dynamics follows an optimization principle (Metz
et al., 2008). Further, the explicit expressions for 5(v) and f(v), and thus the distribution p(v) are not
needed to carry out the invasion analysis. All this allows to markedly simplify the evolutionary analysis.

We will nevertheless work out the resident distribution p(v) so as to have a fully worked example that
allows for consistency checks and illustrating the concepts. Since we consider a deterministic resident

population process, the frequency py satisfies at equilibrium the equation
k
Pr(v) = dr_i(v)w;(v)pi(v), (16)
i=0

where w;(v) = s;(v) + (1 — 5(v)) fi(v)/f(v) is the individual fitness— survival plus effective fecundity—of
an individual with ¢ deleterious mutations, and ¢y is the probability that k£ deleterious mutations are
produced upon reproduction. Assuming that the mutation distribution is Poisson with mean p(v) and
0s = of = o, then eq. (16) becomes structurally equivalent to eq. (1) of Haigh (1978) and eq. (5.3)
of Biirger (2000, p. 300) (with mean fitness @ = 1 since population size is constant) and as such the
equilibrium distribution p(v) is Poisson with mean A(v) = u(v)/o (see also the section 1.1.1. in SM).

This completely characterises the genetic state of the resident population and implies that
5(v) = so(v)e ™™ and  f(v) = fo(v)e M), (17)

Substituting the explicit expression for the survival and effective fecundities (eq. 17) into eq. (15) shows
that in a monomorphic v population Ro(vw) = 1, as required for a consistent model formulation.
Eq. (17) generalises the standard mutation-accumulation model of population genetics to overlapping
generations with survival probability depending on the number of deleterious mutations (see e.g. eq. 3.3

Kimura and Maruyama, 1966).

3.1.3 Uninvadable and convergence stable strategies

We now carry out the invasion analysis explicitly following the standard approach of working with selection

gradients (e.g., Parker and Maynard Smith, 1990; Frank, 2008; Geritz et al., 1998; Rousset, 2004; Mullon
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et al., 2016). Using eq. (11), (12), (14), and (17) in eq. (15) and taking the derivative with respect to u,,

we find that the selection gradient on maintenance can be written as

S ug=vg T - §(v)1) (1—,) (a“ﬂ(v) B [asg(v) Far(l- §(v))D 7 18

Us=Vg

Oug

where the terms in parenthesis display the trade-off between allocating resources into maintenance vs.
the two vital rates. The first term in eq. (18) is the marginal benefit of investment into repair, which is a
decreasing function of vs. The second term is the marginal cost of investment into maintenance and this
depends on the weighted sum over average survival and open breeding spots. This is a concave function
of vy if ag > ay, a convex function of v, if o < cf, and independent of v, if ag = ay = a. Decreasing o,
as, and ar favours allocation of resources to maintenance, since it yields higher returns from investment
into germline maintenance (recall that lower values of parameter ¢, means that investing resources into
germline maintenance exhibits weaker diminishing returns of investment and lower values of parameters
af and g means that investing resources into fecundity and survival, respectively, exhibits stronger

diminishing returns of investment). We find that the selection gradient on survival can be written as

ORo(u,v)
Oug

(19)

o (%gm mﬂ—s@»)’

1—3(v) v (1—wy)

Ug=Vg
Ug =g

where the terms in the parenthesis display the trade-off between allocating resources into survival vs.
fecundity. The first term in eq. (19) is the marginal benefit of investments into survival, which is a
decreasing function of v, while the second term is the marginal benefit of investments into fecundity,
and increasing function of v,. This trade-off is the classical reproductive effort trade-off (e.g., Pen, 2000,
eq. 4) with the difference that it is here affected by the mutation rate. In particular, an increase in the

baseline mutation rate pu,(vg) favours higher allocation to survival (by increasing 5(v)).

*

A necessary condition for (ug,

u}) = u* to be an evolutionary equilibrium is that the selection gradients

vanish at this point (for an interior equilibrium, i.e. 0 < wk uf < 1), ie. 8R0(u,v)/8us = 0 and

g’
ORo(u,v)/dug = 0 evaluated at v = u = w*. Without further assumptions on eqs. (18)—(19), we were

unable to find such analytical solutions. But setting as = ay = «, we find that there is a unique solution

1

exp(un) | 71 -
0 iy < 2 (=) i < 5
* = ay * o 1
Ug = L ) Ug = exp(=2 )( o )*q a—T (20)
1— (aaub> ¥ otherwise =L ;““" otherwise
n b

with corresponding expressions for the mutation rate p(u*) and mean number of novel (deleterious)

mutations A(u*) taking the following form

I ifuX=0 Uy /o ifuX=0
() = =0 =" = (21)
afa, ifu; >0 af(a,o)  ifug >0
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Eq. (20) determines the candidate uninvadable and convergence stable trait values. We checked that
for biologically realistic parameter values (e.g. for the parameter values in Fig. 2) these trait values
are indeed uninvadable and convergence stable using the standard approach (Eshel, 1983; Taylor, 1989;
Geritz et al., 1998; Mullon et al., 2016 and see section 1.5.3. in S.I.) and thus are stable attractors of the
co-evolutionary dynamics. And while we derived the u* assuming o = a5 in eq. (20), we numerically
checked the robustness of the qualitative behaviour of the results with respect to changes in the values
of parameters, such that af # a5 and we find that overall behaviour of the results remain the same (see
section 1.1.4. of S.I.).

Using individual-based stochastic simulations, Fig. (3) demonstrates that the co-evolutionary dynam-

ics indeed converges towards the uninvadable strategy u* (eq. 20) predicted by the analytical model.

*

Fig. (2) illustrates the uninvadable life-history strategies u* = (uy,

u}) (panels a and b), the correspond-
ing mutation rate pu(u*) (panel ¢) and the mean number of novel mutations A(u*) (panel d) as a function
of the baseline mutation rate pp. We can observe from Fig. (2) that the analytically obtained results
(eq. 20-21) correspond very closely to those obtained by carrying out individual-based stochastic sim-
ulations of the full process, which implements the life-cycle and assumptions of the present biological
scenarios but allows for mutation at the life-history locus (e.g. Fig. 1 and see Appendix B for the de-
scription of the simulations and the S.I. for the Mathematica code of the simulations). We observed that
simulations outcomes generally matched well with the analytical predictions when the selection coeffi-
cient is one order of magnitude larger than the baseline mutation rate (e.g., recall the first paragraph of
section 2.3).

Three main results can be drawn from eqs. (20)—(21) and Fig. 2. First, selection favours physiolog-
ically costly germline maintenance at the expense of lowering investment into vital rates (survival and
reproduction), especially when baseline mutation rate is higher (see Fig. 2a). And as expected, invest-
ment into maintenance is higher when returns from investment into vital rates diminish more abruptly
(v is smaller). Second, when germline maintenance evolves, the mutation rate (u(w*)) depends only
on the scaling factors (o and «,,) and is independent of the baseline mutation rate uy, (see Fig. 2¢ and
eq. 21). This is so in this model because the effect of 1, on the cost of germline maintenance via the ex-
pected survival 5(u*) cancels out due to the nature of density-dependence (decrease in expected survival
is cancelled out by the increase in the expectation of acquiring a breeding spot; see eq. 18 when taking
as = af = «). Third, the reproduction-survival trade-off entails that a shift towards higher allocation to
reproduction occurs as py, increases (Fig. 2b). This is so because the effect of the mutation rate on fitness
is similar to that of external mortality and thus decreases the value of allocating resource to survival.
As a result, reproduction is prioritised when py, is large. Connected to this observation, we find that
immortality (complete survival, s(u*) = so(u*) = 1) can evolve only in the absence of external mortality
(sp, = 1) and zero baseline mutation rate (up, = 0, see eq. (20)). In section 1.1.4. of S.I., we numerically
checked that our results are qualitatively robust when relaxing the assumption that the scaling factors

of investment into reproduction and survival are not equal oy # .
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3.2 Coevolution of age at maturity and germline maintenance

3.2.1 Biological scenario

Our second scenario is about the evolution of the time at maturity when mutation accumulation can occur
during growth and reproduction. To that end, we consider that age is continuous and each individual
undergoes the following events. (1) An individual is born and grows in size until it reaches maturity
(growth phase). (2) At maturity an individual starts to reproduce at a constant rate and fecundity
is assumed to be density dependent (reproductive phase). (3) Throughout their lives individuals die
at some constant rate and acquire mutations. We postulate that individuals have again a life-history
trait consisting of two components u = (ug, um), Where ug is the allocation to germline maintenance
(lowering the mutation rate) and w,, is the age-at-maturity. The life-history trait u determines how
resources are allocated between three physiological functions: (i) a proportion u, of resources is allocated
to maintenance of the germline at any age a, (ii) a proportion (1—wug) of resources are allocated to growth
when an individual is of age a < un, (iii) a proportion (1 — ug) of resources is allocated to reproduction
when an individual is at age a > uy,, (hence w € U[T] = [0, 1]?).

We assume that an individual with trait « and ¢ deleterious mutations in a population with resident

trait v has birth, death, and mutation rate throughout lifespan given by

l;i(u, v) = Eo(u, v) —iop  if age a > upy, zero otherwise
d; = dy + i0q (22)
1ug) = pis(ug) = pn(1 — ug)™,
where o, and oq are, respectively, the effects on birth and death from carrying deleterious mutations,

which are assumed to act additively. The death rate of an individual of the least-loaded class is determined

by the baseline death rate dj, and the birth rate of such an individual is assumed to be given by

bo(w,v) = B(xm(w))(1 — ug”)(1 —yN(v)) exp(—pr), (23)

bo (u,v)

where B(z,(u)) is the surplus energy rate, i.e., rate of energy available to considered life-history functions.
This depends on the size xy(u) of the individual at maturity. Here, (1 — ug®) represents how reproduc-
tion depends on the allocation strategy and ug® represents the cost to reproduction when allocating a
proportion ug of resources to germline maintenance. The parameter ay, is a scaling factor (o, > 1 corre-
spond to diminishing returns of investing resources into reproduction). The term (1 — yN(v)) accounts
for density-dependent regulation of reproduction, where N (v) is the total population size of the resident
population and v tunes the intensity of density dependence. Finally, exp(—u¢) is the probability that the
offspring do not acquire new mutations during reproduction where the mutation rate at giving birth pf is

assumed constant. In order to close the expression for the birth rate, we need an explicit expression for
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size at maturity x,,(u). During the growth phase, we postulate that size follows the differential equation

#(t) = BB(x(t))(1 —ug®)  with i.c. 2(0) = zo, (24)

where B(x(t)) is the surplus energy rate and (1 —ug®) represents the proportional allocation of resources
devoted towards growth (instead of repair). For tractability, we assume that (1 —wug®) has the functional
form as the proportional allocation towards reproduction (eq. 23) and 8 allows to tune how much resources
are needed to grow one unit, compared to the resources needed to produce one offspring. We assume
that the surplus energy rate is given by the power law B(x(t)) = ax(t)¢, which is considered to be
appropriate for modelling size/age-at-maturity under determinate growth (see Day and Taylor (1996) for

a justification). It follows from integrating eq. (24) that the size at maturity takes the form

1

rm(u) = (Ba(l —)(1 — S Yum + x(l)_c) e (25)

In the absence of mutation rate, the model reduces to the standard model of age-at maturity (Kozlowski,
1992; Day and Taylor, 1997; Stearns, 1992; Roff, 2008). The model thus combines an unexplored trade-
offs between life-history traits (growth and reproduction) and immutability (germline maintenance and

repair).

3.2.2 Basic reproductive number

For this model there is also no definite end to lifepan (and so T' — oo) and using eq. (9) with the life-cycle

assumptions entails that the basic reproductive number of the least-loaded class reduces to

oo

Ro(u,'v) = Bo(u,v)/ lo(a,u,v)da, (26)

Um

where lo(a,u,v) = exp(—(u(ug) + db)a). Substituting the expression for eq. (23) into eq. (26) and
integrating yields

~ exp((—(n(ug) + o) )

Ro(u,0) = Bl (w)) (1= ug") exp(—pr) x ——— o= x(l—Fv(N)(v». @7

Fl(u)

This shows that one can again express the basic reproductive number as a product of the form Ro(u, v) =
Fi(u)F>(v) and thus the optimisation principle (e.g. Metz et al., 2008) applies also in this model. This
means that evaluating N (v) explicitly is not needed to ascertain uninvadability (and uninvadability will
again imply convergence stability for this model). We will nevertheless work it out and in order to derive
an explicit expression for N(v) it suffices to note that in a monomorphic resident population at a joint

demographic and genetic equilibrium, each individual belonging to the least-loaded class must leave on
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average one descendant with zero new mutations. Hence Ry (v,v) = 1 implies that at the population size
at the demographic steady state is
B (0))(1 — 0§*) — (e + 1(vg)) exp (e + (1(vg) + )i

o= B ()1~ ) | =

which holds regardless of the effects of deleterious mutations on the vital rates. This is a demographic
representation and generalisation of the surprising simple result noted for unstructured semelparous
populations of constant size that the nature of epistasis of deleterious mutations has no effect on the

genetic load (Kimura and Maruyama, 1966; Gillespie, 2004).

3.2.3 Uninvadable and convergence stable strategies

Let us now ascertain the strategies favored by long-term evolution. Using eq. (27) along with eq. (25),
taking the derivative with respect to ug, and rearranging using the property that Ro(v, v) = 1, we find

that the selection gradient on maintenance can be written as

ORy(u,v)
Oug

_ il i et [ yenBln() |1
= g (e ) vk (5 7 (v) *(1—@))’ 29)

where the two terms display the trade-off between allocating resources into maintenance vs. growth and
reproduction. The first term is the marginal benefit of investing into maintenance and the second term
is the marginal cost of investing into maintenance, which is a weighted sum of expected loss in growth

and reproduction. We find that the selection gradient on the age-at-maturity can be written as

. ﬂ(l - vgb)B(xm(v))

U =V T ()
Ug:Ug

ORo(u,v)

Oup,

= (n(vg) + dy). (30)

The first term is the marginal benefit of investment into growth and thus the benefit for maturing later,
while the second terms is the marginal cost of investment into growth and thus the benefit for maturing
earlier. We can see that the increase in mutation rate will select for earlier age-at-maturity.

By first solving R (u, v)/um, = 0 for u, when evaluated at v = u = u*, we obtain

w0k 1 ¢ — o
um(ug) - l1—¢c X (db + M(ug) 5[1 — (Ug)ab]B(J;O)) 7 (31)

which is a function ug. Eq. (31) says that individuals tend to mature later, when individuals growth

rate at birth #(0) (= B[1 — (ug)**]B(z¢)) is higher and/or when death rate di,, mutation rate u(uy), and
birth size xg are smaller (holding everything else constant). When p, — 0 and u, — 0, age-at-maturity
reduces to u¥, = (1 —c¢)7[c/dy, — xo/[Bax§], which is consistent with standard results about the optimal
age/size at maturity (see e.g. Day and Taylor, 1996) and it is useful to compare how allocation to germline

uk), we

maintenance affects the age-at-maturity. In order to determine the joint equilibrium u* = (u},, .
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need to substitute eq. (31) into eq. (30) and solve for uy, and uy at v = u*. We were unable to obtain
an analytical solution for the general case. But restricting attention to a, = a1, = 2 (i.e. assuming

diminishing returns of investment into germline maintenance and reproduction), we find that

o — 2up + dp, — db(db + 4Nb)
’ 2 (32)
. L [c(x/% Vay T, +4ub) %o <db + 2 + /Ao (dy +4ub>>1

R 2dy/dy + 4y, ) BeB(xo) 23/dp (dp + 4p)

with corresponding mutation rate given by

(dp — Vdu/dy + 4p)?

mlug) = ™ (33)

while the corresponding population size N(u*) can also be explicitly expressed in terms of parameters

but remains complicated (see section 2.1.4. in S.I. for the full expression).

*

We checked that for biologically realistic parameter values, the equilibrium u* = (ug,

uk)) (see Fig. 4
panels (a) and (b) for graphical depiction of the equilibrium as a function of the baseline mutation rate)
determined by eq. (32) is uninvadable and convergence stable (e.g. for the parameter values in Fig. 4

and see section 2.5.4. and 2.5.5. in S.I.). Further, using individual-based stochastic simulations, we were

*

able to confirm that u* = (ug,

uk ) given in eq. (32) is indeed as stable attractor of the evolutionary
dynamics (see Fig. 5 for a graphical depiction of convergence in the individual-based simulations for four
different initial population states). Fig. (4) also illustrates the equilibrium population size N(u*) (panel
c), and the uninvadable mutation rate u(uy) (panel d) as a function of the baseline mutation rate f,.
Fig. (6) illustrates the body size at maturity z,(u*) (panel a) and the effective birth rate by(u*, u*) at
the uninvdable population state as a function of baseline mutation rate. Overall, Fig. (4) demonstrates,
again, that the analytically obtained results (here using egs. 32-33) correspond very closely to those
obtained by carrying out individual-based simulations of the full process (see section 2.3. in S.I. file for
the Mathematica code).

Three main results can be drawn from eqs. (32)—(33) and Figs. 4 and 6. First, as in the previous
example, selection favours physiologically costly germline maintenance at the expense of lowering the
investment into life-history functions (here, into growth and reproduction, see Fig. 4a). Also, the unin-
vadable mutation rate (u(u*)) monotonically increases with the baseline mutation rate (Fig. 4d). Second,
we find that an earlier age at maturity and onset of reproduction compared to the standard life-history
prediction, especially when baseline mutation rate is high (Fig. 4b). This stems from the fact that, as
in the previous model, the mutation rate and the external mortality have a qualitatively similar effect
on fitness by decreasing effective survival of gene transmission and thus have the same effect on the
growth-reproduction trade-off. This can be observed mathematically, as the marginal cost of investment
into growth is given by (u(vg) + di) (see the last term in eq. 30. For this reason we find that the shift in

growth-reproduction trade-off towards reproduction is higher under: (i) high external mortality rates and

19


https://doi.org/10.1101/2022.05.11.491530
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491530; this version posted October 29, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

(ii) high baseline mutation rates. Since maturing earlier causes the growth period to be shorter, the body
size at maturity zm,(u*) will also be smaller with higher baseline mutation rate yy, (Fig. 6a). Smaller
body size at maturity, in turn, causes the birth rate bo(u*, u*) to be smaller (Fig. 6b). Third, higher
baseline mutation rate causes smaller equilibrium population size (Fig. 4c¢), which is a known result in
population genetics (see e.g. Gabriel et al., 1993). In summary, we thus find that factors that increase
the baseline mutation rate cause higher investment into reproduction at the expense of smaller size and

earlier age at maturity, higher uninvadable mutation rate, and lower equilibrium population size.

4 Discussion

Our formalisation of the long term coevolution between life-history and deleterious mutation accumulation
shows that an evolutionary invasion analysis of this process is tractable when the deleterious mutation
rate is not too high so that the least-loaded class dominates in frequency the resident population. Then,
the basic reproductive number of the least-loaded class (eq. 6 and eq. 9) allows to characterise the joint
evolutionary stable life-history and deleterious mutation rate under a wide range of biological scenarios
under asexual reproduction in age-and physiologically-structured populations. We analysed two specific
scenarios to illustrate this invasion analysis approach: (i) coevolution between reproductive effort and
the mutation rate and (ii) coevolution between the age-at-maturity and the mutation rate. These two
models confirmed the validity of using the least-loaded class as a fitness proxy by comparing results to
those obtained by individual-based stochastic simulations (Figs. 2-4) and provide a number of insights
about life-history and deleterious mutation accumulation coevolution.

The model for the coevolution of reproductive effort with the mutation rate shows that positive
deleterious mutation rate evolves when selection against increasing the mutation rate is balanced by the
cost of germline maintenance and thus extends the well-known results from population genetics (Kimura,
1967; Kondrashov, 1995; Dawson, 1998, 1999) to an explicit life-history theory context. Here, we find
that the life-history resource allocation trade-off between reproduction and survival entails a shift towards
more allocation of resources to reproduction under high baseline mutation rate. This extends to evolving
mutation rate, the result of Charlesworth (1990) obtained from a numerical model that a higher level of
a fixed mutation rate (no germline maintenance) causes higher allocation to reproduction over survival.
We predict that the shift in survival-reproduction trade-off towards reproduction is stronger under: (i)
the conditions when converting resources into vital rates exhibits more abrupt diminishing returns (e.g.
for environments, where organisms have high maintenance costs, e.g. colder climates), (ii) high external
mortality rates (e.g. high predation environment), and (iii) high baseline mutation rates (e.g. induced
by environmental stressors). We also find that immortality (complete survival) cannot evolve even in an
environment with no external mortality because mutation rate cannot be brought down to zero. This
highlights the less appreciated role of mutation accumulation, in addition to the extrinsic, environmentally
caused hazards, that prevent the evolution of immortality (Medawar, 1952; Hamilton, 1966; Charlesworth,

1994). This means that the forces of selection on survival and reproduction (Hamilton, 1966; Ronce and
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Promislow, 2010) also decline due to mutation rate. Overall, this example reveals that endogenous and/or
exogenous factors that increase baseline mutation rate cause lower lifespans through higher allocation to
fecundity, while the observed mutation rate remains constant.

The model for the coevolution of age-at-maturity and the mutation rate similarly yields that positive
mutation rate is evolutionarily stable, but here germline maintenance trades off against investment into
growth and reproduction. This extends the observation of Daiiko et al. (2012) from a numerical model
that looked at the effect of fixed mutation rate on the age-at maturity. They found that higher fixed
mutation rate (no germline maintenance) causes earlier age-at-maturity, but they concluded that this
effect would be relatively small and would be observable only under extreme conditions. Here, we show
that mutation rate can significantly affect life-history trade-offs, since allocation to germline maintenance
co-evolves with life-history. We predict that higher mutation rates are expected to be correlated with
smaller body size at maturity (earlier switch to reproduction) and lower equilibrium population size.
Increased baseline mutation rate thus increases the effect of drift and when the population size is small
enough the force of drift can no longer be ignored (Lynch et al., 2016), which can eventually lead to a
positive feedback between drift and mutation accumulation, i.e. mutational meltdown of the (asexual)
population (Gabriel et al., 1993). Our simulations show, however, that even for a population of about 2000
individuals, drift does not significantly affect the predictions of our model (see Fig. 4). Using individual-
based simulations, the coevolution between somatic maintenance, germline maintenance, body size at
maturity, and population size has been explored by (Rozhok and DeGregori, 2019) where they found
that selection for higher body size (by imposing size-dependent mortality) can lead to higher germline
mutation rate because more resources need to be invested into somatic maintenance. Thus, they found
that higher germline mutation rate and body size at maturity are expected to be negatively correlated
(an opposite prediction from our result). It is however unclear what is driving the selection towards
higher somatic maintenance at the expense of germline maintenance in their model and the generality of
their simulations needs to be further studied.

The analysis of these two models suggests two findings about how life-histories co-evolve with dele-
terious mutation rates. First, the trade-off between lowering the rate of mutations vs investing into life-
history functions affect the evolutionary outcome of life-history trade-offs (e.g. survival-vs-reproduction
or growth—vs-reproduction). Hence, mutation accumulation can have a significant effect on life-history
evolution through the process of coevolution that previous models focusing on the effect of fixed mutation
rates on life-history evolution have not revealed (Charlesworth, 1990; Dariko et al., 2012). Looking at the
effect of fixed mutation rates on life-history evolution underestimates the effect of deleterious mutation
accumulation on life-history evolution, as it does not take into account the effect of the physiological cost
of immutability on life-history evolution. Second, factors that contribute to higher baseline mutation rate
select for “faster” life-histories: higher investment into current reproduction at the expense of survival
and earlier age—at—maturity. Factors that could increase the baseline mutation rate py, include factors

that increase DNA replications errors (number of germ-line cell divisions) or environmental mutagens
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(oxygen level, nutrition quality, see e.g. Ferenci, 2019 for a review).

In conclusion, the physiological cost of lowering the mutation rate connects life-history trade-offs and
(deleterious) mutation accumulation. Studying the evolution of the interaction between life history and
mutation rate can enrich the understanding of diverse array of biological phenomena from the evolution
of ageing to patterns of mutation rate evolution. Our hope is that the formalisation proposed here can

be fruitfully used to this end.
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Appendix A: Continuous time invasion process with mutation accumulation

In section (2.2.2), we presented the renewal equation and growth rate for a discrete time process (egs. 2—
8). Let us now consider that time is continuous and that age-structure is likewise continuous so that
T = [0,00). For this case, accounting entails that the expected number n;(t) of individuals at time ¢ that

descend from a single newborn (age class zero) ancestor residing at t = 0 in class ©; satisfies

ni(t) = I;(t) + /O ni(t — a)bi(a)li () da, (A1)

where all quantities maintain the same interpretation as in the discrete time case.

Eq. (A.1) is functionally equivalent to the standard renewal equation of population dynamics for con-
tinous age-structured populations (Charlesworth, 1994, eq. 1.41). As such, and as for the discrete time
case, it then follows from the standard results of population dynamic processes in age-structured popu-
lations (Charlesworth, 1994, p. 27) that asymptotically, as ¢ — oo, the number n;(t) grows geometrically

as
ni(t) ~ oL K, (A:2)

where K is some constant depending on the process and p; = exp(r;), where r; is the mutant growth

rate (or Malthusian parameter), which is the unique root of the Euler-Lotka equation
o ~ ~
/ exp(—ar;)b;(a)l;(a)da = 1. (A.3)
0

Appendix B: Description of individual-based simulations

We here describe how we carried out the individual-based (stochastic) simulations used for the two model
examples in the main text. The simulation algorithms scrupulously implement the life-cycle assumption
of these models with the only differences relative to the analytical model being that (i) population size
is finite and (ii) the mutation rate at the life-history locus is positive g > 0 (but kept small) in the
simulations. This makes the coevolutionary process in the simulations irreducible (see also discussion
section 2.3) and subject to genetic drift.

The simulation algorithm for the “Coevolution of reproductive effort and mutation rate” scenario (see
section 1.3. of S.I for the Mathematica code) follows a population composed of a finite and fixed number
(=7500 in the simulations) of individuals, where each individual is described by its genetic state (vector of
traits consisting of allocation to maintenance, allocation to survival and number of deleterious mutations
the individual has). One life-cycle iteration then proceeds as follows. We start by computing the fecundity
of each adult individual, which is determined by its trait values (eq. (11)). Then, we evaluate the survival
probability of each adult individual according to its trait values (the survival of an individual is given by

a Bernoulli random variable with mean given by its survival probability eq. (11)). After eliminating the
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dead individuals, we fill the “vacated breeding spots” by randomly sampling offspring from the relative
fecundity of all adult individuals before survival, thus effectively implementing a Wright-Fisher process
for reproduction (Mode and Gallop, 2008). Once a newborn is chosen to fill the breeding spot, each
of its traits mutate independently with probability (g = 0.01 in our actual simulations). The effect
size of a mutation follows a Normal distribution with zero mean and a standard deviation (=0.02 in our
simulations). Finally, we allow for deleterious mutations to accumulate at the deleterious mutation locus
according to a Poisson distribution with mean that depends on the life-history locus (as specified by
eq. (11)). To obtain the results shown in 2, we initialised the simulation with a monomorphic population,
with no deleterious mutations and life-history trait values given by the analytically predicted equilibrium.
In Fig. 3 we demonstrate the convergence stability of our simulations and we started the simulations away
from the equilibrium for four different initial values of the traits.

The simulation algorithm for the “Coevolution of age of maturity and germline maintenance” scenario
(see section 2.3. of S.I for the Mathematica code) follows a population whose size is endogenously
determined according to a continuous-time stochastic updating process using the so-called “thinning”
algorithm described in Section 3.1 of Ferriere and Tran (2009), which allows to exactly implement our
life-cycle assumptions. A thinning algorithm is essentially an algorithm to simulate the points in an
inhomogeneous Poisson process (inhomogeneous Poisson processes can be simulated by “thinning” the
points from the homogeneous Poisson process), where the points or events take place sequentially (see e.g.
Chen, 2016 for a conceptual description). Hence, under this algorithm, each individual is described by a
vector specifying its age, allocation to repair, the age at maturity, and the number of deleterious mutations
the individual has. The events in the thinning algorithm then follow a Poisson point process whose mean
is determined by the vital rates (eq. (22)) and where the occurrence of the events depends on the relative
weights set by birth, death, and mutation rates of an individual. We defined as a “generation” N (u*)
iterations of the thinning algorithm, where N(u*) is the analytical prediction of the carrying capacity of
the model. This is so because during one iteration of the thinning algorithm, a maximum of one event
can occur (birth, death, or mutation of an individual) to one randomly chosen individual and so after
having iterated the process N(u*) times, on average the total population has been sampled. Thus, in
order to produce a single data point in Fig. 4, we ran the six million(=N(u") X Ngenerations & 2000 x 3000)
iterations of the thinning algorithm. The mutation rate in the life-history locus is set to pr g = 0.1 and the
effect size of the mutation follows a Normal distribution with zero mean and a standard deviation (=0.07
in our simulations). Simulating the results shown in 4, we initialised the simulation with a monomorphic
population, where individual age is given by a = 1/dp, (recall, that d, is the baseline mortality, with
no deleterious mutations and life-history trait values given by the analytically predicted equilibrium. In
Fig. 5 we demonstrate the convergence stability of our simulations and we started the simulations away

from equilibrium for four different initial values of the traits.
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Figure 1: Key components of the life-history model with mutation accumulation. An individual’s geno-
type is characterised by a life-history locus L, and a deleterious mutation locus (purple rectangle) L, .
The mutation rate at the life-history locus pyp is considered to be fixed, while the mutation rate u at
the deleterious mutation locus depends on the life-history trait w and is evolving. Individuals can be
characterised by the life-history allocation trajectory u = {u(a)}se (life-history trait) and the number
Nm = {nm(a)}eer of deleterious mutations accumulated in the germline throughout lifespan. The re-
source allocation trait captures two different types of trade-offs: (i) between immutability vs life-history
and (ii) between different life-history functions themselves (”classic” life history trade-offs, e.g. Stearns,
1992; Roff, 2008). Hence, the life-history locus affects the vital rates and thus fitness directly via resource
allocation to life-history functions and indirectly through allocation to germline maintenance since vital
rates depend on the number of deleterious mutations. For the invasion analysis we use the basic repro-
ductive number of the least-loaded class Ry as a fitness proxy (egs. 6 and 9 as detailed in section 2.3).
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Table 1: List of key symbols of the general model.

Key symbols of the model

a Individual age; age a can take either discrete (a € {0,1,2,...}) or continuous
(a € [0, 00]) values over all possible age classes T (e.g. T = [0, c0] in many con-
tinuous age life-history models, as maximum age is often not a fixed number).

u(a) Individual life-history trait expressed at age a (e.g. proportional allocation
fecundity, survival, germline maintenance); formally, u : T — R”

u = {u(a)aer Full life-history schedule over all age classes (e.g. proportional allocation of
resources to fecundity from birth to death); formally, w € U[T], where U[T]
is a set of all admissible life-history schedules; namely, a set of discrete or
continuous real-valued functions over domain 7.

N (@) Number of deleterious mutations at age @ in the locus where deleterious mu-
tations can accumulate; formally, n, : T — N. Since we assume asexual
reproduction, the genetic details of the locus for trait ny,(a) is irrelevant (i.e.
it may consist of many underlying loci).

Nm = {nm(a)}eer. | Profile of deleterious mutations across all age classes; formally, n,, € N[T] is
an element of the space N[T] of all possible discrete functions of range N over
domain TJ.

p(v) Equilibrium probability distribution for the number of deleterious mutations in
the resident population carried by individuals across the different age-classes,
formally p(v) € A(N x T), where A(A) is the set of probability measure over
set A.

po(u,v) Invasion fitness (per-capita growth rate)of zero-class individuals with mutant
allele u in the population resident to trait v; if the least-loaded class dominates
the population.

Roy(u,v) Basic reproductive number of the least-loaded class, i.e. the expected number
of offspring with zero deleterious mutations produced by an individual with
zero deleterious mutations

bo(a, u,v) Effective number of newborns with zero mutations produced by zero-class mu-
tant individuals age a in a resident population (discrete time model); effective
birth rate of newborns with zero mutations of zero class mutant individual of
age a in a resident population (continuous time model).

do(a,u,v) Death rate of zero-class mutant individual at age a in the resident population
lo(a,u,v) Probability of survival of a mutant zero-class individual to age a in a resident
population.
we(a, w,v) Rate at which germline mutations appear in an offspring when giving birth at
age a.
Lus(a, u,v) Rate at which germline mutations appear in an individual at age a. J
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Table 2: List of key symbols of “Coevolution of reproductive effort and the mutation rate model” .

Symbols for “Coevolution of reproductive effort and the mutation rate”.

Usg, Us Proportional allocation of resources to survival of mutant and resident individ-
ual, respectively.

fbs Spb Baseline (maximal) fecundity and probability of survival, respectively (fi, = 5,
Sp = 0.5 )
U Baseline mutation rate at which germline mutations appear; mutation rate,

when no resources are allocated into germline maintenance.

@ Scaling factor of investing resources into germline maintenance. (a, = 2).
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Figure 2: Predictions from the analytical model (solid lines) and from individual-based simulations of a
finite population (circles) for the uninvadable life-history strategies u* = (uy, u?) (panel a and b) and the
mean number of novel mutations A\(u*) (panel ¢) as functions of baseline mutation rate . The solution
for the individual-based simulations are obtained as time-averages measured over 7500 generations while
starting the simulation at the analytically predicted equilibrium (see Appendix B for details about the
simulations and S.I. for the simulation code). The different colours represent different values of scaling
factor « of reproduction and survival (smaller values of « corresponding to more strongly diminishing
returns from investment into vital rates). Parameter values: f, =5, ay =2, sy = 0.5, 0 = 0¢ = 05 = 0.2;
for simulations: N = 7500, fi, =5, sy, = 0.5.
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Figure 3: Evolutionary convergence towards the uninvadable life-history strategy u* = (ug7us) ~

(0.50,0.40) (grey circle). The arrows give the analytic direction of selection at any population state
(egs. 18 and 19) and the colourful jagged lines represent the evolution of population average trait values
over evolutionary time in simulations (from initial time, up to 3000 generations). Simulation were started
from four different initial conditions: (i) vy = 0.1, vs = 0.1, (ii) vy = 0.1, vs = 0.7, (iii) vg = 0.7, vy = 0.1,
and (iv) vy = 0.7, vs = 0.7. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3000
generations. Parameter values: f, =5, oy = 2, s, = 0.5, 0 = 0¢ = 05 = 0.2; for simulations: N = 6000,
fb = 5, Sp = 0.5.
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Table 3: List of key symbols of “Coevolution of age at maturity and germline maintenance model”.

Symbols for “Coevolution of age at maturity and germline maintenance model”.

Uy Vm Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

Body size of a mutant individual at age t.

B(zm(u)) Surplus energy rate, i.e., rate of energy available to be allocated to life-history
functions; we assume that the surplus energy scales as the power with size, i.e.
energy available to mature individuals is B(zm(u)) = azm (u)°.

ps(ug) = p1(ug) | Rate at which germline mutations appear in a mutant individual over time
(independent of age).

dy, Baseline death rate.
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(a) Uninvadable investment into maintenance u;. (b) Uninvadable switching time ug,.
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Figure 4: Predictions from the analytical model (solid lines) and from individual-based simulations (circles
obtained as averages) for uninvadable life-history strategies u* = (u;,,u;) (panel a and b), population
size N(u*) (panel ¢) and mutation rate u(uy) as functions of baseline mutation rate 1, for different values
of baseline mortality di, (di, = 0.1250 - black, d;, = 0.1625 - red, d;, = 0.2 - orange). The dashed lines
represent the “classical life-history” prediction (i.e. when i (ug) — 0 and uy — 0), where the colours of the
dashed represent the different values for baseline death rate d;, parameter and match the values of solid
lines (d, = 0.1250 - black, d, = 0.1625 - red, d, = 0.2 - orange). The solution for the individual-based
simulations are obtained as time-averages measured over 3000 ” generations” while starting the simulation
at analytically predicted equilibrium for the trait values and population size (see S.I. section 2.3 for the
code and for more details). The different colours represent different values of baseline mortality rate dy,.
Parameter values: 0 =0, =04 =0.2, 29 =1, a = 0.9, c = 0.75, v = 0.00035, S =1, ur = 0.
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Figure 5: Evolutionary convergence to the uninvadable life-history strategy u* = (ug, uy,) =~ (0.41,11.6)
(grey circle). The arrows give the direction of selection at any resident population state (egs. 29 and
30) and the colourful jagged lines represent the evolution of the population average trait values over
evolutionary time in simulations (from initial time, up to 3500 generations). Simulation were started
from four different initial conditions: (i) vy = 0.1, vs = 0.1, (ii) vy = 0.1, vs = 0.7, (iii) vg = 0.7, vy = 0.1,
and (iv) vy = 0.7, vy = 0.7. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3500
generations. Parameter values: 0 = o, =09 = 0.2, 29 =1, a = 0.9, ¢ = 0.75, v = 0.00035, 5 = 1, pug = 0,
dp = 0.1250.
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Figure 6: Predictions from the analytical model for the body size at maturity z,(uw*) and the effective
birth rate bo(u*,u*) at the uninvadable population state as a function of baseline mutation rate for
different values of mortality rate d, (d, = 0.1250 - black, d, = 0.1625 - red, dy, = 0.2 - black). The
dashed lines represent the “classical life-history” prediction (i.e. when p(uy) — 0 and uy — 0), where
the colours of the dashed represent the different values for dy, parameter and match the values of solid
lines (d, = 0.1250 - black, d, = 0.1625 - red, d, = 0.2 - black). Parameter values: 0 = o1, = g4 = 0.2,
zo=1,a=0.9,¢c=0.75~v=0.00035, 5 =1, us = 0.
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